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Úloha III.4 . . . mezi zrcadly 7 bodů
Uvažujme osově symetrické magnetické pole mezi dvěma velkými „magnetickými zrcadly“.

Magnetické siločáry, které vedou od jednoho zrcadla k druhému, se směrem ke krajům zhuš-
ťují. Přitom všude platí, že složka magnetického pole rovnoběžná s osou symetrie je mnohem
větší, než složka kolmá, B∥ ≫ B⊥. Uprostřed mezi zrcadly má magnetická indukce minimální
hodnotu Bmin, zatímco poblíž zrcadel dosahuje maxima Bmax.

Pokud se v takovém poli pohybuje nabitá částice, zachovává se její magnetický moment µ =
= Ekin,k/B, kde Ekin,k je kinetická energie částice příslušná pohybu kolmo na osu symetrie.
Ze středu vystřelíme částici pod úhlem θ vzhledem k ose. Jaká je podmínka, aby se částice
odrazila mezi zrcadly a zůstala uvězněna?

Dále si představme, že ze středu vystřelíme velké množství částic v náhodných směrech –
tedy každý směr na pomyslné sféře má stejnou pravděpodobnost. Jaká část těchto částic zůstane
ve stroji uvězněná mezi zrcadly?

Marek se ztratil v zrcadlovém bludišti.

Pokud částice o hmotnosti m vyletí pod úhlem θ od osy rychlostí v, má kolmou složku kinetické
energie E0,k = (1/2)mv2 sin2 θ a magnetický moment µ0 = E0,k/Bmin. Protože směrem ke
krajům pole roste a magnetický moment má podle zadání zůstat stejný, musí růst i kolmá
složka kinetické energie. To se stane, když se bude měnit rovnoběžná kinetická energie na
kolmou – částice bude zatáčet a poletí víc kolmo. Stále totiž platí zákon zachování energie,
a protože magnetické pole vždy působí silou kolmo na pohyb částice, tak nekoná žádnou práci,
pouze mění směr rychlosti. Celková kinetická energie tak zůstává konstantní.

Pokud je pak pole na krajích tak silné, že ani celá kinetická energie přesměrována do kolmého
směru nestačí pro splnění podmínky zachování magnetického momentu, musí se částice otočit
a je tedy odražena. Proto
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Rovností v předchozí rovnosti dostaneme mezní úhel θm, pod kterým se částice ještě odrazí.
Pro druhou část úlohy budeme střílet do úplně náhodných úhlů s rovnoměrným pokrytím

myšlené koule do které bychom se strefovali. Z nerovnosti výše dostaneme, že aby částice zůstala
ve stroji, musí pro úhel od osy, pod kterým je částice vystřelena platit
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Z geometrického náhledu zjistíme, že pravděpodobnost, že se trefíme do oblasti těchto úhlů, je
rovná poměru kulové vrstvy těmito úhly ohraničené ku povrchu celé koule. Tu můžeme spočítat
jako poměr povrchu jednotkové sféry bez povrchu dvou kulových vrchlíků určené úhlem θm vůči
povrchu celé jednotkové sféry. To je
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což je náš hledaný poměr.
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Učeně bychom mohli stejný výpočet provést integrací. Uvědomíme si, že díky symetrii celý
výpočet stačí dělat pro vhodnou čtvrtsféru a dostáváme pro pravděpodobnost
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jak jsme čekali.
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