
FYKOS Solution XXXVIII.IV.S

Problem IV.S . . . Electrochemistry 4 — capacitance and impedance spec-
troscopy 10 points; průměr 5,72;
řešilo 32 studentů

1. The geometric surface area of our platinum electrode is 4 cm2. However, its surface is
very rough, so the active surface area may be higher. In an experiment, we measured the
capacitance of the whole electrode to be 700 μF. If we estimate the distance of adsorbed
ions in the solution from the platinum surface to be 1 nm, how many times larger is the
active surface area compared to the geometric area? The experiment takes place in water
with εr

.= 80. – 2 points

2. Draw the impedance spectrum in a Nyquist plot for a resistor R = 23 mΩ, a capacitor
with capacitance C = 0.5 mF, and CPE with parameters Q = 0.3 Ω−1·sα and α = 0.6 for
the frequencies ranging from f1 = 1 kHz to f2 = 10 kHz. – 2 points

3. Determine all the parameters of a Randles circuit from the provided spectrum. The data
points are distributed logarithmically over the frequency range from 10 Hz to 10 kHz, with
5 data points per one frequency decade. – 3 points
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Figure 1: Measured spectrum.

4. Impedance spectra of a simple reaction, described by a Randles circuit, were measured at
a DC current I given in the table 1. From curve fitting the spectra, the ohmic resistance
was found to be RΩ = 55 Ω for all measured values. The charge transfer resistance Rct
values are listed in the table below. Assume the measurements were conducted in the
Tafel regime. Determine the parameter b in the exponential form of the Tafel equation j =
= j0 exp(η/b) derived in the third episode of the series. – 3 points

Table 1: Values of the current and the resistance.

measuring I

mA
Rct

Ω
1 0.13 208
2 0.24 99
3 0.57 45
4 1.11 22
5 2.04 14

Jarda devoted the whole episode to his favourite experimental method.
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Problem 1
The solution is quite straightforward. From the formula for capacitance, we express the active
electrode area as

Aact = Cd

ε0εr
= 9.9 cm2 ,

where d = 1 nm. The ratio to the value Ageo is thus approximately 2.5.

Problem 2
Subproblem 2a) The impedance of the resistor is simply Z̃R = R, meaning it does not
depend on frequency, so all points will map to a single location. Furthermore, it is a real
number, so it will be on the real axis at the coordinate R + 0i = 23 mΩ.

Subproblem 2b) The impedance of the capacitor according to the serial text is

Z̃C = − i

Cω
,

which if a frequency function, so multiple points will appear in the graph. Additionally, it is
purely imaginary, meaning all these points will lie on the vertical axis. For f1 = 1 kHz, the
impedance is Z̃C

.= −318i mΩ, while for frequency f2, it is ten times smaller.

Subproblem 2c) The impedance of the constant phase element is given by the serial text as

Z̃P = 1
Q (iω)α = 1

Qωα
i−α .

The imaginary unit i can be written as

0 + i · 1 = cos π2 + i sin π2 = ei π2 ,

then

i−α =
(
ei π2

)−α
= e−i απ

2 = cos
(

−απ
2

)
+ i sin

(
−απ

2

)
= cos

(
απ
2

)
− i sin

(
απ
2

)
.

The ratio of the imaginary and real components is constant for all frequencies, so the impedance
always lies on a line passing through the point [0, 0], inclined at an angle απ/2 toward the
negative part of the imaginary axis.

Substituting into the definition of the impedance of this element, we obtain

Z̃P = 1
Q (iω)α = 1

Qωα

(
cos

(
απ
2

)
− i sin

(
απ
2

))
.

For f1, the impedance is (10 mΩ, −14i mΩ), while for f2, it is approximately (2.6 mΩ, −3.6i mΩ).
The spectra of the individual elements are shown in graphs 2, 3, and 4.
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Figure 2: Graph for pure
resistance.
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Figure 3: Graph for the
capacitor.
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Figure 4: Graph for the
constant phase element.

Problem 3
The ohmic resistance is determined from the point where the measured curve approximately
intersects the real axis at higher frequencies, therefore on the left side of the graph. The
intersection is closer to 10 Ω than to 20 Ω but not that close; the correct value is RΩ = 13 Ω.

The charge transfer resistance is given by the diameter of the circle in the graph, so we
subtract the intersection at lower frequencies, which has a value of approximately 58 Ω. Thus,
Rct

.= 58 Ω − 13 Ω = 45 Ω.
The most challenging part here is determining the capacitance, the final characteristic of

the circuit. To determine the resistances, we used intersections with the real axis, but these
are not suitable for capacitance determination. Therefore, we also use the imaginary part of
the complex impedance, which arises precisely due to the capacitive behavior of the reaction.
From the series, we have the equation for the impedance of the Randles circuit

Z̃Ran = RΩ + Rct

2 + Rct

2
1

1 + C2ω2R2
ct

(
1 − C2ω2R2

ct − 2iCωRct
)

.

We have proven that the points lie on a circle; therefore, an angular frequency ωi, at which
the imaginary part equals the radius of this circle, exists; we know the radius to be equal
to Rct/2. This particular point is interesting because it is at the greatest distance from the real
axis. From the general equation for Z̃Ran we can solve for the frequency ωi by equating the
imaginary parts

−i
Rct

2 = Rct

2
1

1 + C2ω2
i R2

ct
(−2iCωiRct) ⇒ 1 − 2CωiRct + C2ω2

i R2
ct = 0 .

The solution to this equation is clearly CωiRct = 1. Thus, if we know Rct and determine the
angular frequency of this special point, we can easily calculate the desired capacitance. In our
case, we already know Rct = 45 Ω.

The spectrum consists of 16 points, with 5 points per decade of frequency. Counting the
frequencies from the right, the rightmost lower point should correspond to 10 Hz, the sixth
point along the arc to 100 Hz, and the twelfth to 1 000 Hz. The point on the arc where our
model predicts the maximum imaginary component lies somewhere between the eighth and
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ninth points. We estimate its frequency to be fi = 300 Hz. The capacitance is then calculated
simply as

C = 1
Rctωi

= 1
2πfiRct

.= 1.2 · 10−5 F .

Problem 4
In the problem statement, we were given the dependence of current density on overvoltage η,
which we derived in the third part of the series. Charge transfer resistance was defined in the
fourth part as

Rct =
(

dI

dη

)−1

= dη

dI
.

How does this resistance specifically depend on the current or overvoltage? We express η as
a function of I and substitute

η = b ln
(

I

I0

)
⇒ Rct = dη

dI
= b

I
.

The charge transfer resistance is thus, for this model, inversely proportional to the current
raised to a power, and the proportionality constant is exactly the parameter we are looking for!
We just need to take a pair of RiIi, multiply them, and average them. We get the value

b =
∑

RiIi

5 = (26 ±1)mV .

So, if we increase the overvoltage by 26 mV, the current increases by e-times. By multiplying
this value by the number ln 10 .= 2.3, we get a value 60 mV·dec−1, which is easier to interpret—
it tells us what voltage is required to increase the current tenfold. This value is called the Tafel
slope.

For comparison, let us also examine the value of b with quantities that appeared in the
exponent in the third part of the series. We have

(1 − α)z F

RT
η = η

b
.

The temperature T is set for the experiment, R and F are constants, η cancels out, and b has
been determined from the experiment. For a symmetric energy barrier, we have α = 1/2, so
we can determine the number of electrons per reaction z as

z = RT

0, 5F b

.= 2 ,

where we substituted the standard temperature T = 25 ◦C and b = 26 mV. The obtained Tafel
slope thus corresponds to a two-electron reaction.
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Notes on the solutions sent by participants
In subproblem 2, the task was slightly unclear; to solve it correctly, it was enough to plot the
graph for each of the named elements separately. However, some participants calculated the
spectrum for various parallel or series combinations of the given elements. If their spectrum
was correctly depicted within the chosen model, they were awarded full points.

In subproblem 3, most participants calculated the capacitance from the position of a point in
the spectrum. It is necessary to choose the point with the highest imaginary part, as the points
along the real axis are more densely packed and their position depends less on the frequency,
which reduces the achievable accuracy.

In the final subproblem, many participants calculated the charge transfer resistance Rct as

Rct = − RT

j0z F
,

which was given in the third part of the series. However, in its derivation, a condition was
mentioned that the exponentials in the Butler-Volmer equation can be linearized, meaning that
the currents and overvoltages are small. In our task, however, we were operating in the Tafel
regime, where the current depends exponentially on the overvoltage. Therefore, we cannot use
the definition of Rct from the third part, but rather from the fourth part:

Rct =
(

dI

dη

)−1

,

where I is the current in the system and η is the overvoltage (here, we silently switched from
current density to current, so we are not normalizing to the electrode surface). Therefore, for
the charge transfer resistance, Ohm’s law does not apply in general, and we calculate it only
using the derivative. You can verify for yourself that when you perform the calculation of Rct

from the new definition in the region where the Butler-Volmer equation can be linearized, you
obtain the above relation Rct = −RT/(j0zF ).

Jaroslav Herman
jardah@fykos.org
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