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Problem II.E . . . tension in the kitchen 12 points; průměr 7,21; řešilo 78 studentů
Measure the deformation curve for an ordinary rubber band. Jarda worries he’ll go ballistic.

Theoretical Introduction
The deformation of a body is a change in its dimensions, shape, or volume caused by external
forces. Deformations can be classified into two types:

• elastic (reversible), which disappear once the external forces are removed;
• plastic (permanent), where the body remains deformed even after the external forces cease

to act.
There are several ways in which a body can be deformed, such as tension, compression, bending,
shear, and torsion. In this task, we will consider only deformation caused by tension.

A fundamental quantity describing deformation is normal stress σ, which is analogous to
pressure in fluids. It is defined as the force F acting perpendicularly on the surface S of the
body, expressed as

σ = F

S
.

To describe deformation, we also introduce the relative elongation ε:

ε = ∆l

l0
= l − l0

l0
,

where ∆l is the absolute elongation of the rubber band, l0 is its original length, and l is its
current length. For elastic deformation under tension, Hooke’s law states that the stress in
a deformed body is proportional to the relative elongation

σ = Eε ,

where E is Young’s modulus, a material constant.
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Figure 1: General deformation curve.

In figure 1, the general deformation curve is divided into several sections: the segment from
0 to A corresponds to elastic deformation (Hooke’s law holds). After exceeding the proportional
limit σu, the section between A and B represents anelastic deformation. Anelastic deformation
is still reversible, but after unloading, the material returns to its original state only after some
time. Beyond the elastic limit σE , plastic deformation occurs. In the section between C and D,
the material undergoes what is known as creep, where exceeding the yield strength σk results in
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a large relative elongation for a small stress change. Between D and E, the material undergoes
strain hardening, and beyond the ultimate tensile strength σp, the material fractures.

However, we will focus on the general relationship between σ and ε, even for cases of
inelastic deformation. When this dependence is plotted on a graph, the resulting curve is called
the deformation curve. The general deformation curve is shown in figure 1. Different materials
exhibit different deformation curves, and the proportions of the individual sections may vary,
or some sections may be entirely absent.

Experiment Description
To measure the deformation curve of a kitchen rubber band, we used the following equipment:

• kitchen rubber band,
• digital microscope Hüntermann HMI-05U (with an accuracy of 0.002 mm),
• measuring tape (with a 1 mm graduation),
• kitchen scale First Austria (with an accuracy of 1 g),
• water bucket with a thin handle,
• waterproof bag,
• syringe.
For greater accuracy, we do not cut the rubber band. Instead, we determine its initial

length l0 as half of its total length. Both the bucket handle and the attachment point of the
rubber band are considered thin enough to neglect the band’s length in the bending region and
assume it remains the same for all measurements. The rubber band is then hung vertically, and
a bucket of mass mk is attached to its lower end. At this moment, the rubber band is stretched
to length l by the weight W = mkg acting downward. The relative elongation of the rubber
band is defined as

ε = ∆l

l0
= l − l0

l0
.

If we assume a cross-sectional area A along the entire rubber band, we can express the normal
stress in the rubber band caused by the weight W as

σ = W

2A
= mkg

2A
,

where we multiplied the cross-sectional area by a factor of two because in the case of an uncut
rubber band, the bucket is suspended by two strands.

l0

Δl

l

�W

Figure 2: Simplified diagram of the apparatus.
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When we add water of volume V and density ρ to the bucket, the rubber band stretches to
a length l′, and we now have

ε′ = ∆l′

l0
= l′ − l0

l0
, σ′ = (mk + ρV )g

2A
.

We continue this process to measure the deformation curve of the rubber band until it breaks.
To verify Hooke’s law, we primarily need to measure the relationship for small relative

elongations. However, the bucket itself may be too heavy and stretch the rubber band more
than desired. Therefore, for the first few measurements, we use a lighter waterproof bag instead
of the bucket. The measurement process remains the same, and we use the same formulas for ε′

and σ′, except that we replace the bucket mass mk with the waterproof bag mass mp.

Data Processing
In our calculations, we assume the gravitational acceleration g = 9.81 m·s−2 and the density of
water ρ = 1.000 kg·m−3.

Using a measuring tape, we determined the initial length of the rubber band (half of its
total length) as l0 = (50.2 ± 0.5) mm, where the uncertainty was estimated as half the size of
the smallest part of the scale. This uncertainty is considered for all length measurements taken
with the tape.

Using a scale, we determined the mass of the bucket to be mk = (110 ± 1) g and the mass
of the waterproof bag to be mp = (17 ± 1) g.

Using a microscope, we measured the dimensions of the rubber band and estimated its
cross-sectional area as a rectangle with sides a = 1.40 mm and b = 1.47 mm. The measurement
uncertainty ∆a = ∆b = 0.03 mm was significantly overestimated based on microscope calibra-
tion we did by using a calibration plate of known length and considering slight variations in
these dimensions along the rubber band. The final cross-sectional area of the rubber band was
determined as A = ab, with uncertainty calculated according to the uncertainty propagation
formula for the product of two quantities:

∆A

A
=

√(
∆a

a

)2

+
(

∆b

b

)2

,

resulting in A = (2.06 ± 0.06) mm2. Similarly, we calculated the uncertainties ∆ε and ∆σ.
Water was added using a syringe with a graduation of 5 ml, corresponding to a mass of 5 g.

For time efficiency, several “divisions” of water were added at once. The uncertainty in volume
was neglected.

A total of 94 measurements were taken, with the first three using the waterproof bag. For
clarity, only the first 10 and the last 3 values are shown in Table 1.

Results and Discussion
In the graph in figure 5, it is difficult to precisely determine the proportionality limit σu, the
elastic limit σE , and the yield point σk. However, we can at least estimate them as:

σu ≈ 0.3 MPa , σE ≈ 0.5 MPa , σk ≈ 0.8 MPa .
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Figure 3: Dimension a of the rubber
band.

Figure 4: Dimension b of the rubber
band.

Table 1: Table of measured values.

N
m

kg
l

mm
∆l

mm
ε

1
σ

MPa
∆ε

1
∆σ

MPa
1 0.017 50.7 0.5 0.01 0.04 0.0003 0.003
2 0.047 52.2 2.0 0.04 0.11 0.0012 0.004
3 0.082 54.2 4.0 0.08 0.19 0.003 0.007
4 0.11 56.2 6.0 0.12 0.26 0.003 0.008
5 0.13 58.2 8.0 0.16 0.31 0.004 0.009
6 0.15 60.2 10.0 0.20 0.36 0.005 0.011
7 0.17 62.2 12.0 0.24 0.41 0.006 0.012
8 0.19 64.2 14.0 0.28 0.45 0.007 0.014
9 0.21 67.2 17.0 0.34 0.50 0.008 0.015

10 0.23 69.7 19.5 0.39 0.55 0.009 0.016
· · · · · · · · · · · · · · · · · · · · · · · ·
92 1.87 297.2 247 4.92 4.46 0.05 0.13
93 1.89 298.2 248 4.94 4.50 0.05 0.13
94 1.91 299.2 249 4.96 4.55 0.05 0.13
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Figure 5: Measured deformation curve.

To avoid influencing the mechanical properties of the rubber band too much, we did not remove
the load between measurements and did not test the effect of elastic recovery. However, we
see that the first few values lie approximately on a straight line, which corresponds to Hooke’s
law. Therefore, we fitted the first four values in the program gnuplot with the equation σ(ε) =
= Eε + σ0 and obtained the following parameters:

E = (2.02 ± 0.10) MPa , σ0 = (0.027 ± 0.008) MPa .

The value of E is Young’s modulus for tensile deformation of our rubber band, and it corre-
sponds well with the range of 1.5, MPa to 5, MPa for rubber (as per standard tables). The
constant σ0 represents a combination of the stress induced by the weight of the rubber band,
which weighs approximately 1 g, as well as the error due to approximations and simplifications
we made during the analysis.

We can further observe that in the region of inelastic deformation, the points marked with
squares are less densely packed, even though the weight increment between data points remains
constant. This suggests that material flow may be occurring, where the same change in stress
results in a greater elongation. Finally, we see that at the end of the curve, the points become
more densely packed, which corresponds to the material hardening. The curve ends with the
rupture of the rubber band, indicating that the tensile strength for our particular rubber band
is approximately:

σp ≈ 4.5 MPa .

The rubber band may have deformed differently than just by tension, for example, it might
have slightly twisted or sheared. As seen in the images, the rubber band was not uniformly
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wide and appeared non-homogeneous. Of course, the cross-sectional area of the rubber band
changed during stretching, even though we did not consider this when calculating the normal
stress. Since the rubber band was not homogeneous, this effect was difficult to estimate. For
a homogeneous material, the ratio of relative elongation to relative transverse contraction under
tensile stress is given by Poisson’s ratio, which for rubber has a numerical value of approximately
2.

Conclusion
We measured the deformation curve for a typical kitchen rubber band, and this curve is plotted
in the graph in figure 5.
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