
FYKOS Solution XXXVIII.II.5

Problem II.5 . . . focal point in a cylinder 9 points; průměr 4,33; řešilo 36 studentů
Consider a cylindrical capacitor with internal radius r1 and external radius r2. The capacitor
is charged so that the voltage between the two electrodes is V . Electrons with a small an-
gle distribution ∆α are flying out perpendicular to the radius of the cylinder at a distance r
(r1 < r < r2) and at such speed that their distance from the center of the cylinder is approx-
imately constant. Determine the location of the first point in which the electrons focus again.
The situation is planar and do not consider the space charge of the electrons.
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Jarda heard about different types of analyzers for electron spectroscopy.

We will first express the electric field and the electrostatic potential from the capacitor and
then later express the movement of electrons. Gauss’s law states that the electric field passing
through a surface is proportional to the charge enclosed by that surface. Considering a cylin-
drical surface with the same axis as the capacitor, we get a zero field for radii smaller than r1 as
the charge inside the surface is zero. For r1 > r > r2, the cylindrical surface encloses a charge
with linear charge density σ, so we easily express the Gauss’s law as

2πrE = σ

ε0
,

where E is the electric field and ε0 is the permittivity of vacuum. The electric field is then

E = σ

2πε0r
.

Outside the cylinder with radius r2, the enclosed charge is zero, so the electric field is also
zero. Now, we can calculate the magnitude of the charge (linear charge density) σ. We do this
by calculating the electric potential and determining the potential difference between the inner
and outer radii equal to the voltage V .

V = φ2 − φ1 =
∫ r2

r1

σ

2πε0r
dr

V =
[

σ

2πε0
ln r
]r2

r1

= σ

2πε0
ln r2

r1

σ = 2πε0V

ln r2
r1

from this equation we can express E as a function of radius as

E(r) = V

ln r2
r1

1
r

.

Now that we are familiar with the electric field, we can describe the motion of electrons.
The only force acting on the charged particles is the electric force, which acts radially (either
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towards the center or away from it). We will use the polar coordinates to describe the motion.
However, since this is a non-inertial reference frame, we must also include the centrifugal force.
Thus, in the r and θ coordinates, we get the equation of motion for an electron with a negative
elementary charge e

mr̈ = mrθ̇2 − eV

ln r2
r1

1
r

. (1)

Since we have a single equation with two variables, we must introduce another equation
to solve the system. This additional equation comes from the law of conservation of angular
momentum. The application of this law is valid because the electric force acts radially (toward
the center), meaning the net torque is zero. Therefore, we can write

L = mr2θ̇ = const . (2)

Thus, we can express angular velocity θ̇ from the equation (2) as

θ̇ = L

mr2

and substitute it to the equation (1)

mr̈ = mr
(

L

mr2

)2
− eV

ln r2
r1

1
r

,

r̈ = L2

m2r3 − eV

m ln r2
r1

1
r

. (3)

Even though we have obtained a differential equation for radius r, we cannot solve it ana-
lytically. However, we are interested in a beam with a narrow angular distribution ∆α, which
moves along a nearly constant radius trajectory. If the particles are to move along a constant
radius, the right-hand side of the equation must be zero. Therefore, the following must be true

L2

m2r3 = eV

m ln r2
r1

1
r

.

From this, we can finally express r2
0 as

L2

m2r2
0

= eV

m ln r2
r1

,

r2
0 = L2

m

ln r2
r1

eV
.

Now, we substitute this equilibrium radius corresponding to the angular momentum L into
the equation (3)

r̈ = L2

m2

(
1
r2 − 1

r2
0

)
1
r

.
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Next, we must utilize a fun little trick. We cannot solve the equation for arbitrary r, but we
know two things – the solution for a stable trajectory at distance r0 and that the angle ∆α is
small. So, we can expand r = r0 + ∆r and linearize the equation.

d2

dt2 (r0 + ∆r) = L2

m2

(
1

(r0 + ∆r)2 − 1
r2

0

)
1

(r0 + ∆r)

d2

dt2 (∆r) = L2

m2

(
r2

0 − r2
0 − 2r0∆r − ∆r2

r2
0(r0 + ∆r)2

)
1

(r0 + ∆r)

d2

dt2 (∆r) = L2

m2

(
−2∆r − ∆r2

r0

r0(r0 + ∆r)2

)
1

(r0 + ∆r) .

We will assume that ∆r ≪ r0 and neglect higher powers of ∆r to obtain

d2

dt2 (∆r) = L2

m2
−2∆r

r4
0

.

Here, we notice the equation of a harmonic oscillator with angular frequency ω =
√

2L/(mr2
0).

However, we want to focus on the scenario where the electrons return to the radius r0, which
occurs after half a period corresponding to the time

T

2 = π
ω

= πmr2
0√

2L
.

For small divergent angles of the beam ∆α, we can assume that all electrons have the same
angular momentum L = mr2

0 θ̇0, where θ̇0 is the initial angular velocity. As we can assume
a constant angular velocity in the approximation of small angles, we get the following for the
angle θ1, where all the electrons first converge

θ1 = θ̇0
T

2 = θ̇0
πmr2

0√
2L

= θ̇0
πmr2

0√
2mr2

0 θ̇0
= π√

2
.= 127◦ .

This result is utilized, for example, in 127◦ deflectors, which are used to measure the energy
of electrons.
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