
FYKOS Solution XXXVIII.II.3

Problem II.3 . . . floating pyramid 5 points; průměr 2,36; řešilo 121 studentů
Consider a homogeneous pyramid with density ρj = 250 kg·m−3 floating on water with den-
sity ρ = 1 000 kg·m−3. While floating, its axis is vertical. Is the position more stable when the
apex of the pyramid is pointing up or down? The height of the pyramid is h = 20 cm and the
surface area of its base is S = 49 cm2.

Lego was thinking about a problem where the pyramid oscillates.

Consider a homogeneous pyramid with a density ρi floating on a water of density ρ (so ρi < ρ).
Its axis is vertical while floating. The question is whether it reaches an mechanical equilibrium
while its apex is pointing up or down.

If we are to compare the stability of two positions, it suffices to compare their potential
energy. Since the pyramid displaces the same amount of water in both cases, the water level
will be at the same height in both situations. It is reasonable to take the water level as the
zero level of potential energy. However, we must consider not only the potential energy of the
pyramid itself (otherwise the pyramid would not float but rest on the bottom) but the sum of
the potential energy of the water and the pyramid. The problem does not specify how much
water is in the container, but this detail is unnecessary, since we only care about the relative
potential energy of the two cases, not the exact amount. We’ve therefore chosen to calculate
the difference in potential energy between the system with the pyramid and a case where the
pyramid would be replaced with water of the same mass (so the surface would have the same
height again).

The volume of the pyramid is Vi = 1/3Bh. Its mass is mi = Viρi = 1/3Bhρi. Therefore,
the volume of the displaced water is Vv = mi/ρ = 1/3Bhρi/ρ.

We need to find the position of the pyramid’s center of mass. It is not difficult to look up
said value on the internet, pyramid’s center of mass is at 1/4 of its height. This result can, of
course, be reached by integrating.

Pointing down
The submerged part of the pyramid will also have a pyramid shape. Due to the similarity of
triangles, it will be a smaller version of the original pyramid. Let k be the ratio of similarity.
Then the height of the submerged part is kh and the surface of base k2B. The volume of the
submerged part is then Vp = 1/3k3Bh. This volume must equal the volume of the displaced
water Vv and so

1
3k3Bh = 1

3B h
ρi

ρ
,

k =
(

ρi

ρ

)1/3

.

Hence the base will be h − k h = h(1 − (ρi/ρ)1/3) above water. And since the center of mass
is at a quarter of the pyramid height lower (as the pyramid is upside down), the center of mass
is at height h − kh − h/4 = h(3/4 − (ρi/ρ)1/3). Then the potential energy of the pyramid is
equal to

Ei1 = migh

(
3
4 −

(
ρi

ρ

)1/3
)

.
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As for the water, compared to the case in which the water level would have stayed the same
height as now, just without any pyramid, we have to remove the water where the pyramid is
submerged, which mathematically can be done by “adding” a pyramid with a negative den-
sity −ρ and therefore mass −mi. At the same time, the pyramid’s base is at the height kh, so
the center of mass will be kh/4 under the surface, more accurately at the height −kh/4. The
potential energy of water here is thus

Ev1 = −mig

(
−h

(
ρi

ρ

)1/3

/4

)
= migh

(
ρi

ρ

)1/3

/4 .

The total potential energy in this case relative to the zero level is

E1 = Ei1 + Ev1 = 3
4migh

(
1 −

(
ρi

ρ

)1/3
)

.

Pointing up
In this case, the submerged part of the pyramid will have the shape of a frustum. The part
extending above the surface will be a smaller version of the pyramid itself. Let the ratio of
similarity here be denoted as q. The volume of the submerged part is then

Vp = Vi − Vabove = 1
3Bh − 1

3q3Bh = 1
3(1 − q3)Bh .

This volume must be equal to the volume of the displaced water
1
3(1 − q3)Bh = 1

3Bh
ρi

ρ
,

q =
(

1 − ρi

ρ

)1/3

.

Since the pyramid’s height above the surface will be qh, the pyramid’s base will be the
remaining (1 − q)h below the surface. The center of mass of the pyramid will be a quarter of
the height above the base, that is, at −(1 − q)h + h/4 = (q − 3/4)h. The potential energy of
the pyramid itself is then equal to

Ei2 = migh

((
1 − ρi

ρ

)1/3

− 3
4

)
.

However, for the water, missing water volume is in the shape of a frustum, making it harder to
find the center of mass directly. One option is to integrate directly. Another one would be to
solve the problem in two parts: add the whole pyramid as “negative water”, for which we know
the center of mass and then add the actual water back to the portion of the pyramid above the
waterline, in which we cancel the “negative water”). The potential energy corresponding to the
addition of negative water for the entire pyramid is calculated in the same manner as Ei2, we
just substitute mass for −Viρ:

Ev2− = −1
3Bhρgh

((
1 − ρi

ρ

)1/3

− 3
4

)
.
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The potential energy corresponding to the addition of water to the part of the pyramid above
the surface is obtained similarly, but we substitute the mass with Vaboveρ = 1/3q3B hρ and the
center of mass is qh/4 above water

Ev2+ = 1
3q3Bhρgh

(
1 − ρi

ρ

)1/3

/4 .

The potential energy of water is then

Ev2 = Ev2− + Ev2+ = −Viρgh

((
1 − ρi

ρ

)1/3

− 3
4

)
+ q3Viρgh

(
1 − ρi

ρ

)1/3

/4

= Viρgh

(
−
(

1 − ρi

ρ

)1/3

+ 3
4 +

(
1 − ρi

ρ

)(
1 − ρi

ρ

)1/3

/4

)

= mi
ρ

ρi
gh

(
3
4 −

(
3 + ρi

ρ

)(
1 − ρi

ρ

)1/3

/4

)

= migh

(
3ρ

4ρi
−
(

3 ρ

ρi
+ 1
)(

1 − ρi

ρ

)1/3

/4

)
.

The total potential energy in this case relative to the zero level is

E2 = Ei2 + Ev2 = migh

((
1 − ρi

ρ

)1/3

− 3
4

)
+ migh

(
3ρ

4ρi
−
(

3 ρ

ρi
+ 1
)(

1 − ρi

ρ

)1/3

/4

)

= migh

(
3
4

(
ρ

ρi
− 1
)

−
(

3 ρ

ρi
− 3
)(

1 − ρi

ρ

)1/3

/4

)

= 3
4migh

(
ρ

ρi
− 1
)(

1 −
(

1 − ρi

ρ

)1/3
)

.

Comparison
So the question remains as to which of these energies is greater, i.e., for example, when E2 is
greater

E1 < E2

3
4migh

(
1 −

(
ρi

ρ

)1/3
)

<
3
4migh

(
ρ

ρi
− 1
)(

1 −
(

1 − ρi

ρ

)1/3
)

1 −
(

ρi

ρ

)1/3

<

(
ρ

ρi
− 1
)(

1 −
(

1 − ρi

ρ

)1/3
)

,

let us denote the ratio ρi/ρ = p. Then we get the inequality

0 < p1/3 − 1 +
(

1
p

− 1
)(

1 − (1 − p)1/3) ,
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while when this inequality is satisfied, E2 is greater, i.e., the apex-up position is less stable. So
nothing is stopping us from substituting in the values from the problem statement, namely the
density. We can see that the question does not depend on h, and S. When we substitute for ρi
(as in p = 0.25), we get −0.1 on the right. Inequality is, therefore, not satisfied and E2 < E1,
which implies that the apex-up position is more stable than the apex-down position.

The solution could easily end there, but since this is a model solution, we will discuss the
result a bit more. The inequality probably needs to be solved numerically, e.g., let the computer
draw a graph of how the right-hand side depends on p. WolframAlpha is convenient for this
use case, as it will compute its roots. We, however, will use Gnuplot here.
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Figure 1: Graph of the right-hand side value as a function of p.

We see that for p = ρi/ρ < 1/2 the apex-up position is more stable because in such a position
the center of mass of the pyramid is lower (imagine, for example, an inflatable pyramid: its
density is negligible and it is quite intuitive that it will not “stand on its tip”). Apex-down
orientation would be more stable for p = ρi/ρ > 1/2 as the water has greater impact here. We
even see that for p = ρi/ρ = 1 both positions are energetically equally stable, which makes
perfect sense, because the density of the pyramid is equal to the density of the water, thus the
whole pyramid is submerged, making the potential energy indifferent to orientation.

Integrals
In this section, I will first deduce the position of the pyramid’s center of mass by integration,
and then the center of mass of the frustum, which we had to solve by a clever trick in a previous
section.

Consider a pyramid with height h and base B. Its cross-section at height x above the base
will be (by similarity, the length decreases linearly) S(x) = S((h − x)/h)2 = B(1 − x/h)2.
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So its mass will be

mi =
∫ h

0
ρiB(x) dx = ρiB

∫ h

0

(
1 − x

h

)2
dx = ρiB

∫ h

0

(
1 − 2x

h
+ x2

h2

)
dx

= ρiB

[
x − x2

h
+ x3

3h2

]h

0

= ρiB
(

h − h + h

3

)
= 1

3Bhρi .

We arrived at the same result as we did before. Now we need to calculate height coordinate of
the center of mass ht by taking the product of mass and height of each point mass and then
dividing it the by the mass

htmi =
∫ h

0
ρiB(x)x dx = ρiB

∫ h

0
x
(

1 − x

h

)2
dx = ρiB

∫ h

0

(
x − 2x2

h
+ x3

h2

)
dx

= ρiB

[
x2

2 − 2x3

3h
+ x4

4h2

]h

0

= ρiB

(
h2

2 − 2h2

3 + h2

4

)
= 1

12Bh2ρi ,

hence ht = (1/12)Bh2ρi/mi = h/4, as we could find out on the internet.
The coordinates of the center of mass and height of the frustum can be obtained by an

analogous procedure with the only difference being not integrating up to the height h but only
to the height at which the pyramid is truncated. In our example, the pyramid was cut at
a height of (1 − q)h above its base. The mass of the displaced water is therefore

mv = ρB

∫ (1−q)h

0

(
1 − 2x

h
+ x2

h2

)
dx = ρB

[
x − x2

h
+ x3

3h2

](1−q)h

0

= ρB
(

(1 − q)h − (1 − q)2h + (1 − q)3 h

3

)
= Bhρ

(
(1 − q) − (1 − 2q + q2) + 1

3(1 − 3q + 3q2 − q3)
)

= Bhρ
1
3(1 − q3) = 1

3Bhρp = 1
3Bhρi = mi ,

which aligns with our previous calculations, as the weight of the displaced water must be equal
to the pyramid’s weight.

We will now calculate the position of the center of mass in a similar way

htmv = ρB

∫ (1−q)h

0

(
x − 2x2

h
+ x3

h2

)
dx = ρB

[
x2

2 − 2x3

3h
+ x4

4h2

](1−q)h

0

= ρB

(
(1 − q)2 h2

2 − (1 − q)3 2h2

3 + (1 − q)4 h2

4

)
= Bh2ρ

(1
2(1 − 2q + q2) − 2

3(1 − 3q + 3q2 − q3) + 1
4(1 − 4q + 6q2 − 4q3 + q4)

)
= Bh2ρ

(
1
12 − q3

3 + q4

4

)
,
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we see that the height above the base is

ht = Bh2ρ

(
1
12 − q3

3 + q4

4

)
/mv = 3h

1
p

(
1
12 − q3

3 + q4

4

)
.

However, since the base is (1 − q)h below the surface, the depth of the center of mass to the
surface will also be (1 − q)h less than what we just calculated, so

hh = ht − (1 − q)h = 3h
1
p

(
1
12 − q3

3 + q4

4 − (1 − q)1 − q3

3

)
= 3h

1
p

(
−1

4 + q

3 − q4

12

)
= h

(
− 3

4p
+ q

p

(
1 − q3

4

))
= h

(
− 3

4p
+ q

4

(
4 − q3

p

))
= h

(
− 3

4p
+ q

4

(
3
p

+ 1
))

.

To get the potential energy of water, we need to multiply the calculation above by −mig
(the expression is negative, because this is the are from which the water is “missing”). If we
substitute q = (1 − p)1/3 and p = ρi/ρ back into the equation, we get

Ev2 = migh

(
3ρ

4ρi
−
(

3 ρ

ρi
+ 1
)(

1 − ρi

ρ

)1/3

/4

)
,

which again, aligns with the results obtained by the different calculation method performed
above – as one might expect, it doesn’t matter what approach one takes.

Mind that with the parameters included in the problem statement, the stable position is
with its apex pointing upward.
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