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Serial: Electrochemistry 3 – kinetics and efficiency

In the third episode of our series, we are going to take a look at what affects the reaction rate
and, therefore, what current and power we can obtain from our cells. In the previous part we
learned about the voltage we can get from a cell depending on its specific configuration, such
as the type of reacting substances, their concentrations and other conditions. This time more
calculations and derivations await us, making it the most demanding episode of this year’s
series. However, we trust that the result will be worth the effort!

Arrhenius equation
In physical chemistry and in the studies of chemical reactions in general, the Arrhenius equa-
tion1 is a very important building block for describing the reaction rate and it is expressed
as

k = A exp
(

− Ea

RT

)
.

From the previous episodes, we already know R as gas the constant and T as the thermody-
namic temperature. The activation energy Ea in the exponent indicates the energy required by
the reactants for the reaction to proceed (in J·mol−1). The constant A is the coefficient of pro-
portionality, and k here represents the rate constant, which indicates the number of reactions
per unit of time. The entire equation can be applied per unit of volume or area, depending on
which defined space the reactions take place.

We will assume that neither A nor Ea are temperature-dependent in our approximation.
With increasing temperature, the fraction in the exponent decreases. However, since the Ea is
positive, the exponent becomes negative, therefore, the whole exponential increases. Conse-
quently, with increasing temperature, the rate of constant also increases and so does the reaction
rate. While the Arrhenius equation is mostly empirical, it effectively describes the behavior of
some reactions, So, due to its simplicity, we will continue with it.

A straightforward explanation for the origin of this equation can be Boltzmann distribution.
This term from thermodynamics and statistical physics determines the energy distribution of
individual particles in the equilibrium system. You might have heard that e.g. in ideal gas at
temperature T , not all particles are moving at the same speed. Some of them are almost at
rest, and some of them are moving much faster, much faster than e.g. the root-mean-square
speed of the gas molecules.2 The Boltzmann distribution states that for a given particle, there

1Svante August Arrhenius was a Swedish physicist and chemist, on of the founders of physical chemistry.
He received a Nobel prize in 1903 for electrolytic theory of dissociation

2This kind of speed averages the speed of every particle and describes the kinetic energy of all the particles
of given gas.
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is a probability p that it will have the energy E, given as3

p = p0 exp
(

− E

kBT

)
,

where p0 is again constant of proportionality and kB is Boltzmann constant. We see that the
Boltzmann distribution and Arrhenius equation are practically identical, just the variables are
different. Therefore, we can interpret the Arrhenius equation as the probability of the particle
having enough activation energy Ea to react.

But what exactly does activation energy Ea represent? We came across non-spontaneous re-
actions, where the products have higher energy than the reactants. However, even spontaneous
reactions require some energy to proceed. Let’s consider reaction A + B → AB. Particles A
and B must first get close enough to each other to form the product AB. If their kinetic energy
is too low, they cannot get close enough to form the product AB because of the mutual repul-
sion. When the energy is high enough, they can overcome the energy barrier and react. If the
reaction is exothermic, the energy released during the reaction can be used by other reactants
to react.

G

∆G < 0

Ea,bEa,f

reaktanty
A+B

produkty

AB

reakčńı souřadnice

Figure 1: The dependence of free energy on reaction coordinate with designated activation
barrier for both directions of the reaction

In figure 1, the course of the reaction as a function of reaction coordinate, which indicates
how the products are formed from the reactants, is depicted. In our case, this coordinate can
represent the distance between particles A and B. As this distance decreases, the reactants are
forming the products, and the reaction coordinate progresses towards products. In the figure 1
we can also see that the reactants have higher Gibbs free energy G than products, so ∆G is

3This relation applies to systems with discreet energy levels. With continuous spectrum e.g. for kinetic
energies of ideal gas, we have to switch to probability density. However, this does not affect our description.
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negative, meaning that the reaction can proceed spontaneously. However, there is an energy
barrier Ea between the states of products and reactants, which has to be overcome by the
particles. You can imagine it as if you are going from one valley to another. Even though the
second valley can be lower in elevation overall, we have to overcome the hill, which is between
our valleys, to get there. To get up the hill, we need energy. The smaller the hill, the faster you
can get to the final destination. Similarly, for the reactions, the lower the energy barrier Ea,
the higher the reaction rate.

Notice that, in our case, for the forward reaction, where the reactants are converted into
products, the energy barrier Ea,f is lower than for the reverse reaction, where the energy barrier
is Ea,b. In the reverse reaction, the products must have not only the energy to overcome the
activation energy but also enough energy to even out the change in ∆G.

Although this description of the reaction is highly simplified and does not address the
quantum nature of interactions between particles, it provides an intuitive insight into reaction
kinetics. In the following subsection, we will derive the dependence of reaction rate on potential
from this understanding.

Butler-Volmer equation
Let’s consider electrochemical half-reaction (that means oxidation or reduction) R ± ze− → P,
where R means reactant and P product of the reaction. This reaction can be a reduction of
ions Cu2+ + 2 e− → Cu on a copper electrode, our well-known example from previous episodes.
Let us denote the rate constant for this case kf, where the letter f stands for forward, which
tells us the direction of the reaction. However, as we have already indicated several times, on
microscopic scales, the reaction always proceeds in both directions. It is a question of which
one has the highest rate. For the reverse reaction, oxidation P → R, we introduce the rate
constant kb (from the word backward).

The reaction will occur on one electrode, e.g. on the cathode. The number of particles R,
which undergo the reaction (e.g. reduction), is proportional to the surface concentration of
these particles alongside the electrode cs

r (in units of mol·m−3). The superscript s indicates
that is in fact surface concetration and subscript r refers to the reactants. Thus it represents
the concentration of reactants right at the electrode surface.4. The reaction rate is then

vf = kfc
s
r .

Unit of this quantity is mol·s−1·m−2, implying that the unit of the rate constant as we derive
is m·s−1.

For the opposite direction, the rate of oxidation is again proportionate to the surface con-
centration of the products cs

p. Thus, the rate of the oxidation is

vb = kbcs
p .

The net reaction rate, then is

v = vf − vb = kfc
s
r − kbcs

p .

4We will see later that the concentration close to the electrodes and in the volume of the solution can differ,
that is why we must consider them separately.

3



FYKOS Serial XXXVIII.III Electrochemistry 3 – kinetics and efficiency

If we multiply the reaction rates by the number of electrons transferred per reaction z and
the Faraday constant, we obtain the current density

j = zF v = jf − jb = zF
(
kfc

s
r − kbcs

p
)

.

The current density is simply the total current divided by the electrode surface area, assuming
homogeneous surface concentrations.

For further derivations, let’s consider the half-cell to be under standard conditions i.e. the
concentrations of products and reactants are equal to 1 mol and the reaction potential is E◦

reac.
We consider the progress of free energy G to be constant along the reaction coordinate for

the reactants, and then it rises linearly until it starts to sharply decrease to the point when it
creates an energy barrier. In the end, it is constant again for the products (see figure 2). The
activation barrier for the forward reaction is, in our case, Ea, and for reverse reaction Ea −∆G◦

(for spontaneous reaction ∆G◦ < 0). Products and reactants correspond to the local minima of
the G curve. We chose such progress of free energy to approximate in the easiest way possible
the real dependence on the reaction coordinate. We can also draw important conclusions from
it.
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∆G
◦ =

−zF E
◦

reac < 0

Ea,f − ∆G
◦

Ea,f
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Cu
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Figure 2: Considered shape of activation
barrier.
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Figure 3: Shift in Gibbs free energy of the
reactants and decrease in reaction

potential. Full line represents the new
shape of the barrier, dashed one the

original barrier.

Let’s now think about what will happen to rate constants if we lower the reaction potential
to E by ∆E = E◦

reac − E. The difference between the free energy of the reactants and the
products will decrease by zF ∆E. However, we are interested only in the difference in free
energy, not its absolute values, so it does not matter whether we lower the reactants’ energy or
raise the products’ energy by zF ∆E. Let’s consider that we lower the energy of the reactants,
as shown in figure 3.

As a result, the entire energy curve of the reactants shifts downward in the graph. Now,
what happens to the activation barrier for the forward reaction? At first glance, it might appear
unchanged, but because the slopes of the energy barrier differ on both sides, it does change.
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According to figure 4, the forward activation barrier increases by a fraction of the supplied
energy difference. Let’s denote this increase as αzF ∆E, where 0 < α < 1. The energy barrier
is lowered for the reverse reaction. Moreover, the difference between the reverse and forward
barriers must decrease by zF ∆E, as it is also evident in 4.

This reasoning shows that the reverse reaction’s energy barrier decreases by (1 − α) zF ∆E.
One of the problems from the series might be useful for understanding this scheme better.

zF ∆E

zF ∆E

G

∆G < 0

Ea,b(∆E)

Ea,b(0)

Ea,f (∆E)

Ea,f (0)

reakčńı souřadnice

Figure 4: Schematic drawing of the change in activation energies, close up of the figure 3.

Let’s still assume that we have lowered the energy of the reactants by zF ∆E. The rate
constants now become

kf = Af exp
(

−Ea,f(∆E)
RT

)
, kb = Ab exp

(
−Ea,b(∆E)

RT

)
,

where the energy barrier Ea,f/b depends on the reaction type and the change in potential. In
the paragraph above, we stated

Ea,f(E) = Ea,f(0) + αzF ∆E, Ea,b(E) = Ea,b(0) − (1 − α) zF ∆E ,

where Ea,f(0) is the activation barrier without applied voltage, Similarly for the reverse reaction.
Let us break down the energies in the exponents of rate constants

kf = Af exp
(

−Ea,f(0) + αzF ∆E

RT

)
, kb = Ab exp

(
−Ea,b(0) − (1 − α) zF ∆E

RT

)
And introduce the rate constants for cases where we don’t have any applied voltage

kf0 = Af exp
(

−Ea,f(0)
RT

)
, kb0 = Ab exp

(
−Ea,b(0)

RT

)
.
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Now we can get rid of activation energies in the notation, which will be hidden in these constants,
and write

kf = kf0 exp
(

−αzF

RT
∆E
)

, kb = kb0 exp
(

(1 − α) zF

RT
∆E

)
.

For further simplification, let’s consider for a while that ∆E = 0. As we in the beginning
considered the same concentrations of the reactants and products cs

r = cs
p = 1 M = cs, the

current is
j = zF cs (kf0 − kb0) .

We found ourselves in a situation where the potential is given by the Nernst equation, the
reaction is in thermodynamic equilibrium, and there is no net current. However, if the given j =
= 0, then the kf0 = kb0 = k◦ holds, where k◦ is rate constant at standard conditions.

Let’s get back to the situation when ∆E ̸= 0 and remind ourselves of its definition

∆E = E◦
reac − E ,

where E is the reaction potential and E◦
reac is the reaction potential without outside influence

and at standard conditions.
So far, we considered unit concentrations of the reactants and products. But as we men-

tioned above, the current of both forward and reverse reactions is proportional to concentra-
tions. Let’s put into the equation for current density, and we get Butler-Volmer equation in
one of its forms

j = zF k◦
(

cr exp
(

−αzF

RT
∆E
)

− cp exp
(

(1 − α) zF

RT
∆E

))
,

where ∆E = E − E◦
reac. We can see that when ∆E > 0 a cp = cr the net current is negative.

That is because we considered the reduction to be the forward direction of the reaction. With
increasing potential E, we prioritize oxidation, which is the opposite direction of the reaction
for us, and therefore the total current is negative. Thus, it is a question of sign convention,
and we can come across different formulations in the literature. The direction of the reaction,
therefore, the sign of current (as we know from the previous episode), also depends on the
concentrations cp a cr. When the concentration of reactants is high compared to the product,
not even positive ∆E will be enough for a negative current.

Different forms of Butler-Volmer equation
If we do not have a unit concentration of the reactants and products, working with standard
potential does not have to be ideal. Let’s remind ourselves of the Nernst equation for one
reaction, which describes this exact situation

Ereac = E◦
reac − RT

zF
ln Q ,

Where Q is the reaction quotient defined in the previous episode.
Using this equation and the cell potential E, we can rewrite the definition of ∆E to

∆E = E◦
reac − E = Ereac − E + RT

zF
ln Qb = η + RT

zF
ln Qb ,
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where we introduce the quantity overvoltage η = E − Ereac as a difference of potential on the
cell and the potential determined by the Nernst equation.

The equation involves the reaction quotient Qb, which is the ratio of the concentrations of
products to reactants. It is important to note that these are the bulk solution concentrations
far from the electrode surface (hence the subscript b). However, the reaction rates may differ
depending on the concentrations near the electrodes. If the system is in thermodynamic equi-
librium, no net current flows and the concentration is uniform throughout the solution. Thus,
the reaction quotient at the electrodes is also Qb.

By substituting the overvoltage into the Butler-Volmer equation, we obtain:

j = zF k◦
(

cs
r exp

(
−α ln Qb

)
exp
(

−αzF

RT
η
)

− cs
p exp

(
(1 − α) ln Qb

)
exp
(

(1 − α) zF

RT
η

))
=

= zF k◦

(
cs

r

(
cb

p

cbr

)α

exp
(

−αzF

RT
η
)

− cs
p

(
cb

r
cbp

)1−α

exp
(

(1 − α) zF

RT
η

))
=

= zF k◦ (cb
p
)α (

cb
r
)1−α

(
cs

r
cbr

exp
(

−αzF

RT
η
)

−
cs

p

cbp
exp
(

(1 − α) zF

RT
η

))
.

By introducing alternating current

j0 = zF k◦ (cb
p
)α (

cb
r
)1−α

we can rewrite the equation to a simplified form

j = j0

(
cs

r
cbr

exp
(

−αzF

RT
η
)

−
cs

p

cbp
exp
(

(1 − α) zF

RT
η

))
,

where the subscripts for concentrations denote s for the electrode surface and b for the bulk of
electrolyte, far from the electrode. The constant j0 depends on the bulk concentrations of the
electrolyte, the activation barrier Ea, the temperature, and the coefficient α. This equation
illustrates how the surface concentrations of reactants and products influence the current in the
circuit. For example, if the formed products obstruct the access of new reactants, the surface
concentration cs

r decreases, and the reaction slows down. In extreme cases, there may be so few
reactants at the surface that the reaction could proceed in the opposite direction despite the
applied overvoltage η.

When η = 0, the cell potential is determined by the Nernst equation, j = 0, and the surface
concentrations at the electrodes are equal to those in the bulk. This result is consistent with
the assumptions made at the start of the derivation.

If the solution is well-stirred or the currents are small enough, the surface concentrations
do not significantly differ from the bulk concentrations, and the equation simplifies to its most
basic form

j = j0

(
exp
(

−αzF

RT
η
)

− exp
(

(1 − α) zF

RT
η

))
.

The graph of the mentioned function is in the figure 5.
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Figure 5: Dependence of the current on overvoltage according to the most basic form of the
Butler-Volmer equation. In proximity of η = 0 we observe linear dependence

Special cases
If the overvoltage is sufficiently small that this equation is satisfied αzF

RT
η ≪ 1, we get the

relation between current and overvoltage

j = −j0
zF

RT
η ,

This means that current and overvoltage in the proximity of E = Ereac linearly decreases.
Because of this, in analogy with Ohm’s Law5, we can express odpor přenosu náboje as

Rct = − RT

j0zF
.

On the other hand, if αzF
RT

|η| ≫ 1, one of the exponentials will start to dominate the other one,
which we can neglect. For example, if we have αzF

RT
η ≫ 1, we get

j = −j0 exp
(

(1 − α) zF

RT
η

)
,

Therefore, the current grows exponentially with the overvoltage. The negative sign corresponds
to oxidation being preferred, not reduction, as we assumed at the beginning of the chapter. An

5In this case, the current is negative, and this is caused by our sign convention, where we consider reduction
to be the positive direction of the reaction.
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equation of this form (exponential growth of current as a function of overvoltage) is called
Tafel’s equation.

On the contrary, if we want to increase the reduction current, i.e. at which copper is reduced,
we must have η negative. This reduces the voltage on the given electrode. If, under standard
conditions, the galvanic cell with copper and zinc from the previous parts of the series gave us
a voltage of 1.10 V, then if we want to draw a higher current from it, this is only possible at
a lower voltage!

On the galvanic cell, the voltage decreases with increasing current. If the power that the
load in the external circuit can consume can be calculated as P = UI, then as long as we have
a high voltage of around 1.10 V, we have a low current. On the contrary, we have a voltage
going to zero for high currents. In both cases, the power is low. However, for some current and
voltage values, there comes a point when the power of the galvanic cell reaches maximum!

j

E

E◦

cell

elektrolyzér

palivový článek

Figure 6: Relation between voltage and current for an electrochemical cell. Above E◦
cell can

work as an electrolytic cell, for example, as a water electrolyzer. On the contrary, below E◦
cell,

we get voltage on the galvanic cell (fuel cell). In this example, we assume that there are
enough reactants for both reactions. At the same time, we always take the current density as
the absolute value. At the point j = 0, E = E◦

cell there is a sharp break between the two linear
ends of the curves, as follows from Butler-Volmer’s equation.

Efficiency
Let’s imagine the conclusion of the previous part with a specific example. We have an elec-
trolytic cell in which we want to decompose water by electrolysis. We have calculated that
the voltage on the cell is E◦

cell = −1.23 V so the reaction does not proceed spontaneously. We
gradually increase the voltage between the electrodes. When reaching 1.23 V, the barrier for
the electrolysis of water and the reverse reaction is the same, so at the same concentrations,
both reactions would proceed equally quickly. However, let’s assume that we can quickly re-
move hydrogen gas and oxygen products and that no reverse reaction takes place. The current,
therefore, grows exponentially with the applied overvoltage η = EWE − 1.23 V, where EWE, is
the voltage between the electrodes. The index WE indicates that the given quantity refers to
the water electrolyzer.

9
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The power consumption of our electrolyzer is EWEI. Let us assume that with the same
current I we can convert the chemical energy of hydrogen and oxygen back into electrical
energy in the fuel cell in the reaction 2 H2 + O2 −−→ 2H2O.

However, we already know that the maximum voltage in this spontaneous reaction is 1.23 V.
Even if we If an ideal fuel cell could always operate at a 1.23 V, its output would be only I ·1.23 V.
The efficiency of one cycle, i.e. the production of hydrogen in the electrolyzer and its subsequent
conversion in the fuel cell is

ηWE = 1.23 V · I

EWEI
= 1.23 V

EWE
.

This is, however, only the efficiency of hydrogen production in the electrolyzer. In a fuel
cell, the current increases with decreasing voltage. If the current from the device is I at the
voltage EFC, then the power of the fuel cell is IEFC and its efficiency is

ηFC = EFCI

1.23 V · I
= EFC

1.23 V .

Therefore, the total efficiency is

ηcycle = ηWE · ηFC = EFC

EWE
.

This efficiency thus depends only on the voltages on the cell. It would be ideal to work
at the smallest possible overvoltages and voltages around 1.23 V. Here, however, the current
densities are extremely low, and a reverse reaction can also take place. However, if we increase
the overvoltage, the current density starts to grow exponentially. Therefore, by sacrificing
a small amount of efficiency, the current can increase significantly, which is important in many
applications.6 Another option is to increase the size of the electrodes to get the necessary current
and power. However, this solution can be technically impractical and financially demanding
when using expensive catalysts. For a numerical idea, the efficiency of the hydrogen cycle
is currently around 50 %. Current densities in some types of electrolyzers reach 2 A·cm−2 at
a voltage of 1.7 V.

Where did this energy go? When the charge passed between the reactants and products
through the electrodes, it was converted into heat. Of course, that doesn’t have to be a bad
thing!

If you remember how we defined the Gibbs free energy G using enthalpy in the previous
part, you know that ∆G is only a part of the energy of a given chemical reaction, namely
the part that can do work. However, there is a term in the form of heat. Therefore, the
mentioned 1.23 V is not enough to produce hydrogen from water. They are only proportional
to ∆G. Heat must also be supplied so that the products have ∆H more energy. This heat can
be taken by the reactions from the energy losses during the movement of the charge.

We can, therefore, introduce a thermoneutral voltage ETN, which is needed so that the
necessary heat is supplied by electrical energy losses. For the electrolysis of hydrogen ETN

.=
.= 1.48 V. At this voltage, no heat should be generated. If the electrolyzer operates at a higher
voltage, excess heat is generated. If at a lower voltage, the reactions take heat from the
surroundings.

6However, it is not reasonable to increase the voltage and current to infinity. In addition to decreasing
thermodynamic efficiency, losses caused by the limited conductivity of the solution increase. However, we will
mention this in later parts.

10



FYKOS Serial XXXVIII.III Electrochemistry 3 – kinetics and efficiency

In a fuel cell, however, this energy is unavailable to us, so we defined the efficiency using E◦
cell.

It is always released in the form of heat. However, for hydrogen, the ratio is

∆G

∆H
= E◦

cell
ETN

= 1.23 V
1.48 V

.= 0.83 .

So, once we have some hydrogen, we can get it from the energy of its chemical reaction with
oxygen 83 % in the form of electricity. From this point of view, it is therefore considered efficient,
but again, it is a different efficiency than in the previous sense.

Since heat is generated in the devices and they heat up, the reactions also proceed faster.
In the Butler-Volmer equation, the exponent is dependent on 1/T . The voltage on the cell also
decreases due to the definition of Gibbs free energy

∆G = ∆H − T ∆S .

As temperature increases, ∆G decreases because ∆H and ∆S do not change that much. For
example, at 80 ◦C the voltage for water decomposition decreases from 1.23 V to 1.18 V.

We have illustrated this chapter with the example of hydrogen production by electrolysis.
However, the ideas presented are generally valid across all electrochemical processes. Only the
specific values depend on the reactions considered.

Something extra – back to activation energy
At the end of this series, let’s go back to the very beginning, where we talked about the
activation energy for a reaction and how its value affects the rate of a reaction. Let’s illustrate
the significance of this fact with an example of such importance that the number of people on
our planet could quadruple in a hundred years. We will talk about the Haber-Bosch process.

In this process, the gases N2 and H2 react together in an exothermic reaction to form
ammonia.

3 H2 + N2 −−→ 2 NH3 .

Ammonia is now used, among other things, to bind nitrogen for fertilizers in agriculture, so
its artificial synthesis has increased the productivity of agricultural land fourfold. Approxi-
mately 80 % of nitrogen atoms undergo this process in the human body. Although the reaction
of its formation is exothermic, energy is needed to produce hydrogen (obtained, for example,
by burning natural gas), so that in the end, over 1 % of world energy production is consumed.
From these last few pieces of information, it is clear that the Haber-Bosch process for produc-
ing ammonia is an indispensable and an unmissable milestone in the development of human
civilization.

At the beginning of the 20th century, the demand for nitrates was increasing, precisely for
the production of fertilizers but also for explosives and other industrial purposes. The basic raw
material at that time was saltpeter, which was mined, but its reserves were not inexhaustible.
The atmosphere contains about 80 % nitrogen. Still, it is made up of N2 molecules with a very
strong triple bond, so it is not easy to separate nitrogen atoms from each other and bind them
into other compounds. In 1909, however, the German chemist Fritz Haber managed to start
the above- mentioned reaction in laboratory conditions, and a year later, Carl Bosch reworked
the entire process for industrial use. For their achievements, both were later awarded the Nobel
Prize in Chemistry.
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The key to success was not only finding the optimal temperature and pressure of the gaseous
products but also suitable catalysts. Reactions between hydrogen and nitrogen do not occur
when the reactants are in a gaseous state but when they are bound (adsorbed) on the surface of
another solid. Choosing the right substance can significantly help break the strong triple bond
between nitrogen atoms. The nitrogen bond with the surface significantly changes its electronic
structure and weakens the triple bond, which reduces the activation energy for the separation
into individual bonded atoms. The situation is similar for hydrogen molecules. The atoms then
diffuse across the surface and react with each other in several steps until an ammonia molecule
is formed, which leaves the surface in a gaseous state. The solid must, therefore, not bind the
product too strongly so that it does not accumulate on the surface and take up space for further
reactions. The explanation of this process also became the basis for awarding another German
scientist, Gerhard Ertl, the Nobel Prize.

Over time and technological development, iron was used as a suitable catalyst for this
reaction. However, in other applications, much more expensive catalysts must be used to
accelerate the reactions. For example, in the production of hydrogen, we use the noble metals
platinum and iridium as catalysts. However, the price and world reserves of these metals
are a major obstacle to putting the hydrogen economy into economic practice, which is why
people are devoting large financial and scientific resources to research into reducing the amount
or completely replacing these metals with other alternatives while maintaining satisfactory
reaction rates.

A few words in the conclusion
The summary of this part is simple – we found how the current density of electrochemical
reactions depends on the voltage of the cell. We derived the Butler-Volmer equation, in several
forms and approximations. In our procedure, we started with the Arrhenius relation, which
describes the rate of reactions on a very wide scale. Finally, we thought a little about the
energy efficiencies of electrochemical processes and realized that it is not so simple. In the first
three parts, we introduced ourselves to electrochemistry and described the thermodynamics
and kinetics of processes in a very general way. In the rest of the series, we will focus on more
specific phenomena in electrochemistry, but we will still refer to what we have learned so far.
In the fourth series, we will look at the double layer that forms around electrodes and get
acquainted with an experimental method that uses alternating electric circuits.
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