
FYKOS Solution XXXVII.IV.S

Problem IV.S . . . heating and explosions 10 points; průměr 5,54; řešilo 48 studentů

1. Consider a thin-walled glass container of volume V1 = 100 ml, the neck of which is a thin
and long vertical capillary with internal cross-section S = 0.20 cm2, filled with water at
temperature t1 = 25 ◦C up to the bottom of the neck. Now submerge this container in
a larger container filled with a volume V2 = 2.00 l of olive oil at a temperature t2 = 80 ◦C.
How much will the water in the capillary rise?

2. In a closed container with a volume of 11.0 l there is a weak solution containing sodium
hydroxide with pH = 12.5 and a volume of 1.0 l. We burn 100 mg of powdered carbon in
the region above the surface. Determine the pressure value in the container a few seconds
after burning out, after half an hour, and after one day. Before the experiment, the vessel
contained air of standard composition at standard conditions; similarly, we maintained
a standard temperature around the vessel in the laboratory.

3. Describe three different ways in which the temperature of stars can be determined. What
basic physical principles are they based on, and what do we need to be careful of?

Dodo remembered highschool chemistry.

Task 1
The first step is determining the temperature of the two liquids in the thermal equilibrium. We
will use the calorimetry formula

ρ1V1c1t1 + ρ2V2c2t2 = (ρ1V1c1 + ρ2V2c2) t3 ,

where ρ1 = 0.98 kg·L−1 is the density of water and ρ2 = 0.91 kg·L−1 is the density of oil, c1 =
= 4.2 kJ·kg−1·K−1 is the specific heat capacity of water, c2 = 1.97 kJ·kg−1·K−1 is the specific
heat capacity of oil. However, these values depend on temperature. The previous formula
also neglects density and heat capacity changes relative to temperature. It is, therefore, only
a solution with an accuracy of at most two significant digits. After substituting in the values,
we get the temperature t3

.= 74 ◦C.
Next, we have to calculate the expansion of the water column. The coefficient of volume

expansion for water γ = 2.6 · 10−4 K−1 gives us

∆V1 = V1γ (t3 − t1) = S∆h ,

and after adjustments
∆h = V1γ (t3 − t1)

S
= 6.4 cm .

However, the volume of water is not linearly dependent on temperature, so we have to use the
exact densities of water at two different temperatures to obtain the correct result: ρ1(t1) =
= 997 kg·m−3 a ρ1(t3) = 975 kg·m−3. We get

∆V1 = V1

(
ρ1(t1)
ρ1(t3) − 1

)
,

∆h = V1

S

(
ρ1(t1)
ρ1(t3) − 1

)
.= 11 cm .
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The shift of water’s surface height in the capillary due to capillary action and temperature-
dependent change of surface tension is in the order of millimeters, so we neglect it in our
solution.

Task 2
Let’s begin by calculating how much of each compound we have in our closed system. If
we subtract the volume of the solution from the volume of the container, we get a volume
of 10 l of air. At around 100 kPa and 25 ◦C that equals to the molar volume of Vm = 24.5 l,
which corresponds to nvz

.= 0.41 mol. Air contains 21% of oxygen. Therefore, we have nO2
=

= 0.086 mol of oxygen molecules. The question is whether this is sufficient to achieve complete
combustion of mC = 100 mg of carbon. Using the molar mass of atomic carbon Mm(C) =
= 12.0 g·mol−1, we get the chemical amount nC = 0.008 33 mol. Carbon burns according to the
reaction

C + O2 → CO2 ,

so complete combustion consumes nC ≪ nO2
of oxygen to produce the same amount of carbon

dioxide.
In addition, the reaction releases heat of combustion equal to H = 37.2 kJ·g−1, so Q =

= mH = 3.72 kJ per one hundred milligrams of carbon. Let’s also look at the solution at the
bottom of the container. Sodium hydroxide fully dissociates in water to create

NaOH → Na+ + OH− ,

so the concentration of hydroxide anions is pretty much the same as the concentration of sodium
hydroxide.1 We can approximately determine this concentration as

c = c010pH−14 = 0.032 mol·l−1 ,

where c0 = 1 mol·l−1. Thus, in total, we have nNaOH = 0.032 mol in solution (roughly 1.3 g).
For the sake of rigorousness, we add that there is mH2O = 1 kg/(18.0 g·mol−1) .= 56 mol of
water in the container. The carbon dioxide released by burning will slowly be absorbed by this
alkaline solution according to the equation

CO2 + OH− → HCO −
3

to form a bicarbonate anion. Again, nCO2
≪ nOH− , and the reaction will run until there is no

carbon dioxide left.
We can proceed to calculate the pressures. A few seconds after burning out, the amount

of gas will be the same as in the beginning, but its temperature will be higher as energy got
released. Because of the turbulent flow in the container, we can assume a rapid setting of the
thermal equilibrium in the gas. If we consider the specific heat capacity of an ideal diatomic
gas at a constant volume cV = 5R/2 = 20.8 J·mol−1·K−1, the gas will heat up by

∆T = Q

cV nvz

.= 440 K .

1Indeed, besides the concentration of hydroxide anions, water dissociation also contributes to the concen-
tration of hydroxide ions. However, in our current scenario, this contribution is negligible.
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so the pressure increases, as predicted by Charles’ law for isochoric processes, to

p1 = p0
T0 + ∆T

T0

.= 250 kPa .

Consequently, the gas in the container cools down to its original ambient temperature,
and the pressure gets reduced. Given that the gas amount, temperature, and volume remain
constant from the outset, the pressure must also remain unchanged. Therefore, p2 = p0 =
= 100 kPa.

Following this, carbon dioxide is gradually absorbed into the solution. Consequently, the
gas quantity decreases to nC = 0.008 33 mol. To describe this process, we combine the gas laws
for constant volume and temperature, resulting in the relation

p3

p0
= nvz − nC

nvz
.

As a result, the pressure drops slightly to p3
.= 98 kPa.

Task 3
When determining the temperature of cosmic bodies, we encounter one fundamental problem –
we cannot touch them and stick a thermometer in them. We have to measure the temperature of
stars remotely by using the information contained in the light they emit. In the previous episode
of the series, we discussed black-body radiation and the distribution of its radiated energy into
different wavelengths. We can easily derive From Planck’s law, Wien’s displacement law can
be derived

λmaxT = const ,

which describes how the peak wavelength of the energy curve λmax shifts  with temperature T .
In simple terms, we can determine the temperature of an object by observing its color. In
practice, we achieve this by measuring the object’s brightness through two different filters and
applying a calibrated relationship between luminance difference and temperature that is widely
recognized. The second possibility is to use the integral form of Planck’s law – Stefan-Boltzmann
law

L = 4πR2σT 4 ,

where L is the star’s luminosity, R its radius and T its temperature. To apply this method, we
need information about the star’s radius, a value typically accessible only in eclipsing binary
star systems. Interestingly, this relationship is often employed in reverse to estimate the radius
of solitary stars. The problem, however, is that stars are not ideal black bodies. Their spectra
contain spectral lines arising in stellar atmospheres.2 A more accurate method is, thus, the
so-called Spectral Energy Distribution Modeling, which uses theoretically estimated spectra of
stars of different radii, temperatures, masses, and chemical compositions and attempts to find
the best match to the energy fluxes measured in various photometric filters from the ultraviolet
to the infrared region of the spectrum.

A fundamentally different option is to look directly at the spectral lines. Particles in the
atmosphere have thermal velocities according to Maxwell-Boltzmann distribution, causing the

2Furthermore, researchers frequently conduct observations from the Earth’s surface, which means that
absorption within the Earth’s atmosphere affects the measured spectrum. Additionally, interstellar dust along
the path between the star and Earth may absorb light.
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spectral lines to broaden due to Doppler phenomenon. Many other processes also affect the
width of the spectral lines – particle collisions, the intrinsic lifetime of the transition levels, the
rotation of the star itself, . . . For thermal motion, the most important is the dependence of the
broadening ∆λ on the mass of the atom m

∆λ =

√
8kT ln 2

mc2 λ .

Therefore, the lines of hydrogen and then helium will be the widest, and the lines of heavier
elements will be significantly narrower.

We can also use the intensity of the lines. The depth of the lines3 depends, among other
things, on the occupation of the levels of a given ion and the ionization state of a given nucleus.
Let’s consider, for example, the lines of helium with an ionization energy 24.6 eV and hydrogen
with an ionization energy 13.6 eV. In very hot stars, most of the hydrogen is ionized into
protons, resulting in faint hydrogen lines. Additionally, extremely hot stars contain a fraction
of ionized helium He+, leading to the appearance of lines in both neutral and ionized helium
spectra. As stars cool down, the spectra begin to show lines from easily ionizable elements,
and in very cool stars, molecular lines become visible. Conversely, lines from other ions fade
as they return to their ground states, making transitions to higher states less likely. The
presence of spectral lines in stellar spectra forms the basis of the Harvard classification system.
Modern models allow for the calculation of line depths, enabling more accurate temperature
determination. For instance, comparing the depths of lines from two different ionization stages
of an element like iron can provide a more precise temperature estimate.
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3More precisely, we determine the so-called equivalent width by dividing the spectrum by the continuum
spectrum and then calculating the area between the line progression and the continuum level 1.

4

mailto:liptak.j@fykos.org
https://creativecommons.org/licenses/by-sa/3.0/

	S: heating and explosions
	Task 1
	Task 2
	Task 3


