
FYKOS Solution XXXVII.III.5

Problem III.5 . . . air under the water 10 points; průměr 3,97; řešilo 72 studentů
Assume a cylindrical glass of negligible mass, internal cross-sectional area S, and height h that
is turned upside down and its open rim aligned with the water level in the reservoir. We start
to push slowly downwards. What work will we perform if we move the jar with the air inside
so that its base d > 0 is below the surface?
Bonus: Let us now consider a more realistic case. How much work must be performed to
completely submerge a jar of the same dimensions but mass m to the bottom of a container
with area A and initial water level in height H? Assume that the jar is completely submerged
when it reaches the bottom. Jarda would not like to visit Titanic...

As the problem is not as simple as it may seem at first glance, we will show several ways of solving
it, which differ significantly in mathematical difficulty. Firstly, we will tackle the problem by
employing a closed jar method. Next, we will translate the problem into determining the
center of gravity. The third solution involves utilizing thermodynamic potential, specifically
enthalpy. Lastly, we will compute the work directly from the applied force, which is the most
straightforward approach but entails more mathematical complexity.

First, however, we will introduce the notation of the quantities. The bottom of the jar is
at the top after turning it upside down. The top rim is at the bottom. The height of the inner
volume of the jar (i.e., the jar’s height) remains h, and the cross-sectional area of the interior
is S. Once the jar is submerged, the height of the volume of air inside decreases, and we denote
it by x (from the bottom of the jar downwards). The letter y stands for the distance of the
bottom of the jar from the surface downwards, so in the initial position, y = −h. The density of
water is ρ, the gravitational acceleration is g, the atmospheric pressure is pa, and the pressure
inside the jar is p (so p = pa at the start). If the jar is submerged at y = d, we denote x = x∗.
For y = 0, we denote the height of the air volume inside the jar by x = x0.

Thought experiment with a closed jar
At the beginning of the problem, it is necessary to understand where our work will manifest
itself. A jar in water is subject to a buoyant force Fv = V ρg, where V is the volume of air in
the jar below the surface of the water, ρ is the density of the water, and g is the gravitational
acceleration. This force acts upwards, so we need to do work to move the jar further under
the water. Another force is the gravitational force of the air with invariable mass m in the jar,
so its weight is Fg = mg. However, the air density is about three orders of magnitude smaller
than that of water at normal pressure and temperature, so we can neglect it in our solution.

We have to do more work compressing the air inside. The work required to compress the
air at a pressure p by a small volume dV is dW = p dV = pS dx, where we have written the
differential of the volume dV as the product of the base S and the change in the height of the
air in the jar dx.

Since the volume of air in the jar changes with the depth of immersion due to compression,
we solve the problem with a trick. The final state of the jar and the air in it does not depend
on the process by which it is reached (as long as all parts of the process are reversible so that
no energy is lost in the form of heat, for example).

Imagine that some piston, which will be allowed to move around in the jar, is also used to
seal the bottom (normally the top) opening of the jar. For now, we leave the piston on the rim
of the jar, i.e., at a distance h from its regular bottom, and immerse the jar in water so that its
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bottom (top base) is y below the surface. We have thus performed the work to overcome the
buoyant force.

When we release the piston, its position changes because the water pressure is higher than
the atmospheric pressure pa left in the jar. The piston will move upwards until the pressures are
equal. If we let go of the piston, it would compress the gas too much and could start oscillating.
But if we let it go slowly, we could make some use of the work that the water does with its
hydrostatic pressure. That would subtract that work from the work done by submerging the
jar underwater.

Let’s proceed in this way. The work required to overcome the buoyant force is equal to

Wv =
∫ 0

−h

(h + y) Sρg dy +
∫ d

0
hSρg dy .

The second term describes a situation where the entire jar is submerged underwater. In this
case, the applied buoyant force Fv = Shρg is constant. The first term describes the situation
where part of the jar is above water, and the buoyant force of the water is proportional only
to the submerged part h + y. The coordinate y describes the distance of the bottom of the jar
from the surface, so initially y = −h, and when the whole jar is submerged, y = 0. At the end,
y = d. The total work done is therefore

Wvz = h2

2 Sρg + hSρgd .

By doing this work, we have brought the jar to a depth d below the surface. Now, we are
going to be slowly bringing the piston up. Let’s denote x as the distance of the piston from the
bottom of the jar (so at the beginning, x = h). The pressure of the water as a function of x is
given by the sum of the atmospheric pressure pa and the hydrostatic pressure

pv = (x + d) ρg + pa .

Against the water pressure, the pressure p from inside the jar acts on the piston

p = pa
h

x
,

while its expression as a function of x was obtained from the isothermal process from the
condition p1V1 = p2V2. The force acting on the piston is thus

F = S (pv − p) = S
(

(x + d) ρg + pa − pa
h

x

)
.

The work performed by water is

Wv =
∫ x∗

h

S
(

(x + d) ρg + pa − pa
h

x

)
(− dx) ,

where x∗ is the equilibrium position of the piston when the pressure of the compressed air inside
the jar and the pressure of the water are equal. By integration, we get

Wv = S
[(

x2/2 + dx
)

ρg + pax − pah ln x
]h

x∗

= S

((
h2 − x∗2

2 + d (h − x∗)
)

ρg + pa (h − x∗) − pah ln h

x∗

)
.
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Now, the only task remaining is to determine the equilibrium position of the piston. We
find it when the force acting on the piston is zero, i.e.

(x∗ + d) ρg + pa = pa
h

x∗ ,

which is a quadratic equation for x with solution

x∗2
ρg + x∗dρg + x∗pa − pah = 0 ⇒ x∗ =

− (dρg + pa) +
√

(dρg + pa)2 + 4pahρg

2ρg
,

where we had to choose a positive root because the negative root would give negative x∗, which
does not make sense. Substituting into the equation above, we get the work done by the water
as

Wv = S

((
h2 − x∗2

2

)
ρg + (h − x∗) (dρg + pa) − pah ln h

x∗

)
.

Thus, the total work we had to do is

Wcelk = S

(
x∗2ρg

2 − hpa + x∗dρg + x∗pa + pah ln h

x∗

)
.

Substituting from the quadratic equation the term −x∗2ρg = −pah + x∗dρg + x∗pa we get

Wcelk = S

(
−x∗2ρg

2 + pah ln h

x∗

)
,

which, after reaching the equilibrium position, finally leads to the result

Wcelk = S
−2ρgpah − (dρg + pa)2 +

√
(dρg + pa)2 + 4pahρg (dρg + pa)
4ρg

+ Spah ln 2hρg

− (dρg + pa) +
√

(dρg + pa)2 + 4pahρg
.

Thought experiment with grains
We can describe the whole process in a slightly different way. Imagine there are grains of sand
on (continuous) shelves under the surface, all the way to depth h. The piston that we have
used to close the bottom hole in the jar is hollow, allowing grains to enter it. The piston cannot
move in the jar at first. We slide the top grains onto the piston, so the whole jar slightly sinks
as we have increased the gravitational force. We push in the next grains, and the jar sinks
again. We repeat this until all the grains are in the piston and the whole jar is submerged just
below the surface so that the grains’ weight offsets the buoyant force of the water. In this case,
m = V ρ, where m is the mass of the grains and V is the volume of the jar.

The resultant of the forces acting on the jar with the piston and the grains is zero. We can
move the jar to any depth without doing any work. When we reach the desired depth d (from
the bottom of the jar to the surface), we fix the jar for a moment so that it cannot move (e.g.,
we strap it to the bottom). We slide all sand out of the piston and return it to its original
location below the surface. It is here, by pulling out the sand, that we do the work needed to
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submerge the sealed jar in the water. The work performed corresponds to the change in the
center of gravity of the sand in the gravitational field and is equal to

Wvz = mg
(

d + h − h

2

)
= Shρg

(
d + h

2

)
,

which is, in its entirety, consistent with the expression above.
Now, we find more grains of sand on the shelf d + h below the surface of the submerged

jar. We slide enough of them into the piston to release the piston from its constraint but in
a way that it does not move anywhere, i.e., so that the compressive force of the air inside and
the gravitational force of the grains balance the pressure of the water. We slowly remove the
grains and move them to the shelves next to the piston. Once we removed the grains, the
piston moved up to balance the forces. The weight of the grains in the piston (depending on
the volume of air in the jar) is thus the result of the equality of forces.

M(x) g + Spa
h

x
= (x + d) ρgS + paS ⇒ M(x) = S

g

(
(x + d) ρg + pa − pa

h

x

)
.

Let M0 = M(h) = S (h + d) ρ be the mass of the grains at the beginning of the piston’s
movement. We will need it in no time.

We remove the last grain from the piston at the equilibrium position x∗. The density of
sand grains on the shelves next to the jar is then

λ(x) = dm

dx
= S

g

(
ρg + pa

h

x2

)
.

Thus, the water pressure, in addition to compressing the air, did the work of lifting the
grains of sand. Therefore, we can only find their center of gravity to get the magnitude of this
mechanical work done. We find the distance of the center of gravity from the bottom of the jar
as

xT = 1
M0

∫ h

x∗
λ(x) x dx = 1

(h + d) ρg

(
ρg

h2 − x∗2

2 + pah ln h

x∗

)
.

The center of gravity of the grains has, therefore, risen from the shelf at a depth h+d below
the surface by

t = h − xT = 1
(h + d) ρg

(
hdρg + ρg

h2

2 + ρg
x∗2

2 − pah ln h

x∗

)
,

so their potential energy has increased by

Wv = M0gt = S

(
hdρg + ρg

h2

2 + ρg
x∗2

2 − pah ln h

x∗

)
.

We can utilize this gravitational potential energy of the grains, so we subtract it from the
work required to lift the initial grains. The total work we had to do was, therefore

Wcelk = Wvz − Wv = S

(
−ρg

x∗2

2 + pah ln h

x∗

)
,

which, after substituting in xast2, leads again to the same result as in the previous section.
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Solution using enthalpy
Enthalpy is the energy required to create a system of internal energy U and volume V in an
environment with ambient pressure P . As a state function, it does not depend on the path,
only on the current state of the system. We calculate it as

H = U + P V ,

where the term P V is the energy required to create space in the environment for our system.
Suppose that within a distance y ∈ [d, d + x∗] below the surface, we need to make room for

the current air in the jar at pressure pa and the volume Sh. The required volume that such
an amount of air will have at depth d is Sx∗. Since the ambient pressure changes as the depth
changes, we must integrate the P V term. The enthalpy of such a system is

Hf = U + S

∫ x∗

0
((d + x) ρg + pa) dx = U + S

((
dx∗ + x∗2

2

)
ρg + pax∗

)
.

However, in the beginning, we had a system (air in a jar) with the initial enthalpy

Hi = U + Spah .

The internal energy of the gas has not changed because it is an isothermal process. We
have, therefore, performed work to change the enthalpy

Hf − Hi = S

((
dx∗ + x∗2

2

)
ρg + pax∗ − pah

)
.

By substituting from the equation x∗2ρg + dx∗ρg + pax∗ = pah we can modify the previous
expression to

Hf − Hi = −ρgS
x∗2

2 .

Nevertheless, we have still done work to compress the gas, which is an isothermal process

Ws =
∫ x∗

h

p dx =
∫ x∗

h

pah

x
dx = pah ln h

x∗ .

This work escaped as heat from the jar walls to the surrounding water reservoir. In total,
we performed the work

Wcelk = −ρgS
x∗2

2 + pah ln h

x∗ .

Direct calculation using forces
To submerge the jar, we need to apply a downward force. Our “helpers” in this task are the
atmospheric pressure and the hydrostatic pressure exerted by the water above the jar, which
submerges its bottom. Conversely, the air pressure inside the jar, which is equal to the sum of
the hydrostatic and atmospheric pressure at the point where the water is pressing on the air in
the jar, acts on the jar.

5



FYKOS Solution XXXVII.III.5

Once again, we divide the solution into two parts. The first is when part of the jar is still
above water, and the second is when the whole jar is already under water. In the first case, the
force that we have to overcome to submerge the jar further takes the form

F1 = S (p − pa) ,

in the second case, hydrostatic interaction on the bottom of the jar is added

F2 = S (p − (yρg + pa)) ,

where p is the pressure inside the jar. The equation for the equality of the pressures at the
surface of the water in the jar in both cases is

(x + y) ρg + pa = p = pah

x
,

where y ∈ [−h, 0] and x is the height of the air in the jar. We leave the notation x∗ for the
height x that the air will occupy when submerged below the surface d, i.e., as in the previous
cases. Again, we find the height x0 when the jar is completely submerged under water as x0 =
= (−pa +

√
p2

a + 4ρgpah)/(2ρg).
When the force F1 is applied to move the jar down the path dy, the work done is

dW1 = F1 dy = S (p − pa) dy .

From the equality of the pressure in the jar and on the surface of the water in the jar, we
can write the following for the differential of work

dW1 = Spa

(
h

x
− 1

)
dy .

The work done by this force serves both to push the jar deeper and to compress the air
inside. However, we face the question of which variable to integrate by. By x or by y? In
previous solutions, we saw that the result had a compact form for x∗, so we will integrate the
variable x, which should be mathematically simpler. We will then try integrating y to show that
the appropriate choice of variable is important in terms of mathematical difficulty. However,
we must now express dy(x). We take the differentials of the variables in the equation for the
pressures and get

(dx + dy) ρg = −pah

x2 dx ⇒ dy = −pah + x2ρg

x2ρg
dx .

We see that the change in internal volume is negative as we move the jar deeper, which is
the result we would expect.

The work required to submerge the whole jar under water is then given by the integral of
the force F1

W1 = −Spa

∫ x0

h

(
h

x
− 1

)
pah + x2ρg

x2ρg
dx = Spa

∫ h

x0

(
pah2

x3ρg
− pah

x2ρg
+ h

x
− 1

)
dx

= Spa

(
− pa

2ρg

(
1 − h2

x2
0

)
+ pa

ρg

(
1 − h

x0

)
+ h ln h

x0
− h + x0

)
= Spa

(
pa

2ρg

(
1 − h

x0

)2
+ h ln h

x0
− h + x0

)
.
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As we move the jar further under the surface, we do work

dW2 = F dy = S (p − (yρg + pa)) dy .

From the equality of the pressure in the jar and on the surface of the water in the jar, we
can write for the differential of work

dW2 = Sxρg dy .

Substituting for dy and integrating, we get

W2 = Sρg

∫ x∗

x0

x dy

= Sρg

∫ x0

x∗
x

pah + x2ρg

x2ρg
dx

= S

∫ x0

x∗

pah

x
dx + Sρg

∫ x0

x∗
x dx

= Spah ln x0

x∗ + Sρg
x2

0 − x∗2

2 .

The total work done is the sum of W1 + W2, i.e.

Wcelk = Spah ln h

x∗ − Sρg
x∗2

2 +
(

Sρg
x2

0

2 + Spa

(
pa

2ρg

(
1 − h

x0

)2
− h + x0

))
,

where the whole parenthesis is zero.

Sρg
x2

0

2 + Spa

(
pa

2ρg

(
1 − h

x0

)2
− h + x0

)
= Sρg

x2
0

2 + Spa

((
x2

0ρg

2pa

)
− h + x0

)
= Sρgx2

0 − hSpa + Spax0 = 0 ,

so we get our usual result

Wcelk = Spah ln h

x∗ − Sρg
x∗2

2 .

What would happen if we chose y as the integration variable instead of x? We will indicate
this by calculating W2, which in this case would be

W2 = Sρg

∫ d

0
x dy = S

∫ d

0

− (yρg + pa) +
√

(yρg + pa)2 + 4pahρg

2 dy .

The integral of the first bracket in the integrand is equal to −
(
y2ρg + 2ypa

)
S/4. To calculate

the square root, however, we would have to choose a substitution with hyperbolic sine

yρg + pa√
4pahρg

= sinh ξ, dy =
√

4pahρg

ρg
cosh ξ dξ ,
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which leads to

S

2

∫ √
(yρg + pa)2 + 4pahρg dy = S2pah

∫ √
sinh2 ξ + 1 cosh ξ dξ

= S2pah

∫
cosh2 ξ dξ = Spah

∫
(cosh 2ξ + 1) dξ

= Spah

2 sinh 2ξ + Spahξ = Spah sinh ξ cosh ξ + Spahξ .

We leave the individual steps and the introduction to hyperbolic functions to the reader as
homework. By backtracking from substitution and considering integration limits, we get the
work W2 as

W2 = S

4ρg

(
(dρg + pa)

√
(dρg + pa)2 + 4pahρg − pa

√
p2

a + 4pahρg

)
+Spah

(
argsinh dρg + pa√

4pahρg
− argsinh pa√

4pahρg

)
− S

4
(
d2ρg + 2dpa

)
.

Further adjustments would ensure we get the same result as in the previous section. However,
the path to it is mathematically much more complicated.

Solution of bonus
After we have thoroughly discussed the solution of the basic part of the problem, the solution
of the bonus is almost trivial. Let’s consider that at the original level H, we make a hole in the
wall of the container. Thus, as the jar is gradually submerged, the water is held at a constant
height H, and the situation will be the same as in the previous section.

Now, let us suppose that the water that flows out of the container does not fall, but we
hold it at the height H. Once the jar is submerged to the bottom, the amount of water is
proportional to the volume of air in the jar

mv = ρSx∗ .

However, we must return the water to the container to achieve the desired setup. Since the
container is full up to a height of H, we need to raise the center of gravity of the displaced
water. For the height of the water, after we put it back into the jar, the conservation of volume
will be A∆H = x∗S, so we need to do work to raise its center of gravity by ∆H/2

Wzv = mvg∆H

2 = ρS2x∗2g

2A
.

By submerging the jar of mass m, we gained work

Wpon = mgH ,

as its center of gravity has been reduced by H. The total work required to immerse the jar to
the bottom of the container is thus

Wbonus = S

(
−ρg

x∗2

2 + pah ln h

x∗

)
+ ρS2x∗2g

2A
− mgH .
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After substituting d = H − h into x∗ =
(

− (dρg + pa) +
√

(dρg + pa)2 + 4pahρg
)

/(2ρg)
and then into the previous equation, we get

Wbonus = S

8ρg

(
S

A
− 1

) (
− ((H − h) ρg + pa) +

√
((H − h) ρg + pa)2 + 4pahρg

)2

+ paSh ln 2ρgh

− ((H − h) ρg + pa) +
√

((H − h) ρg + pa)2 + 4pahρg
− mgH .
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