
FYKOS Solution XXXVII.II.5

Problem II.5 . . . ferry 10 points; průměr 4,83; řešilo 63 studentů
Imagine a ferry in the shape of a rectangular cuboid with a weight M , length L, width W , and
height H ≪ L from the keel to the deck. After docking at the pier, passengers gradually exit
through the back of the deck so that the empty front part of the deck becomes larger and the
area density of people on the filled part does not change in a different way. Find the maximum
weight of passengers the ferry can carry so that no part of the deck is below the surface when
people disembark. Consider that the ship is stable in the transverse direction and that people
get off slowly. After quite some time, Dodo was at sea again.

Suppose people disembark from the boat slowly enough (compared to the boat’s oscillations).
In that case, we can determine the boat’s position at any moment – its depth of immersion and
tilt – from the balance of forces acting on the boat and their moments. The boat is subject
to buoyant force at the center of gravity of the submerged part of the boat, the gravitational
force of the boat at its center of gravity (which, in the case of a cuboid, is in its geometric
center), and the gravitational force of the people still on board. The disembarkation of people
will gradually reduce the overall downward force, thus decreasing the depth of immersion and
shifting the location of the gravitational force of the people to the side, causing the boat to tilt.
Let’s denote the length of the deck filled with people as l ≤ L, the mass of passengers on the
boat as m, the tilt of the deck relative to the water surface as θ, and the depth of immersion
as ξ – the length of the submerged part of the line segment leading from the center of the deck
to the center of the keel.

The relation describing the force equilibrium is

ρgVp = Mg + m
l

L
g ⇒ ρVp = M + m

l

L
,

where ρ is the density of water. The volume of the immersed part of the boat in the shape of
a rectangular cuboid is defined as the product of its width and side cut of the immersed part
shaped as a trapezoid. We can easily confirm that Vp = DLξ holds, and for depth of immersion,
we get

ξ =
M + m l

L

LDρ
.

This relation implies the condition ξ ≤ H which determines the maximum possible useful ship’s
carrying capacity when the cargo is uniformly distributed on the ship l = L

mmax, static = LDHρ − M .

Determining the balance of the torques will be more difficult because of the geometry.
Consider the torques around the bottom edge of the ship on the side that people are exiting.
Including the contributions of the gravitational and buoyant forces, we have(

L

2 cos θ − H

2 sin θ
)

Mg +
(

l

2 cos θ − H sin θ
)

m
l

L
g − (xT cos θ − yT sin θ) ρgLDξ = 0 ,

where xT and yT are the distance of the center of the submerged part of the ship from the
reference corner in the diameter of the length and height of the ship. From this, by further
substituting for the ξ we obtain

ML

2 + ml2

2L
−
(

M + m
l

L

)
xT = tan θ

(
M

H

2 + m
l

L
H − yT

(
M + m

l

L

))
.
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Figure 1: Sketch of the situation from the side and with the positions of the centers of gravity
of the individual submerged parts.

The situation would be simpler if xT and yT did not depend on θ, which is false. To
calculate the position of the center of gravity, we take the submerged part of the longitudinal
cross-section of the trajectory; let us divide the rectangle lying on the bottom of the ship which
reaches up to the lowest submerged point on the edge opposite the exit and the remaining
triangle. For determining xT, we know that a rectangle has a center of gravity in x1 = L/2
and a triangle in x2 = L/3 (the triangle’s center of gravity divides the line of gravity by
a third). For yT we have the center of gravity of the rectangle in y1 = (ξ − L/2 tan θ)/21 and of
a triangle y2 = ξ − L/2 tan θ + L/3 tan θ. Further, the masses of the bodies are proportional to
their areas S1 = 2Ly1, S2 = 1/2L2 tan θ. Thus, for the position of the center of the submerged
part of the ship, we have

xT =
L
2 L2y1 + L

3
L2

2 tan θ

ξL
= L

2

(
1 − 1

6
L

ξ
tan θ

)
,

yT =
(
ξ − L

2 tan θ
)2 L

2 +
(
ξ − L

6 tan θ
)

L2

2 tan θ

ξL
= ξ

2

(
1 + 1

12

(
L

ξ

)2

tan2 θ

)
.

Substituting into the previous relation for the equilibrium of moments, we get

lm

2
l − L

L
+ L3Dρ

12 tan θ = tan θ

[
M

H

2 + m
l

L
H −

(
M + m l

L

)2

2LDρ

(
1 + 1

12

(
L

ξ

)2

tan2 θ

)]
.

We have obtained the cubic equation for tan θ, whose analytical calculation is impractical.
However, the situation simplifies in the given approximation H ≪ L. Therefore, we need to be
careful not to lose essential terms. The first term on the left side is the absolute term, which
we will keep for now. We will move the second term on the left side to the right. The first two
terms on the right side are about MH, comparable to ρLDHH (the mass of water displaced

1At this point, it would be useful to draw attention to the fact that the whole calculation assumes that this
point does not arise from water, i.e., that 2ξ > L tan θ.
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by the boat is comparable to the mass when it is not submerged). However, due to the given
condition, we know that ρLDHH ≪ ρL3D, so we can neglect this term. The term with the last
parenthesis is still uncertain – the expression (L/ξ)2 tan2 θ is a product of a large and a small
number, but we expect that if the other end of the boat does not emerge, its value should be
less than 4. However, this statement will need to be verified, not assumed. For now, after
a slight modification by multiplication and substitution for ξ, we have

lm

2
L − l

L
≈ tan θ

[
L3Dρ

12 +
(
M + m l

L

)2

2LDρ
+ LDρ

2
1
12L2 tan2 θ

]
.

From this form of the relation, we see that the term with tangent on the right-hand side is the
same as the first term of the right-hand side. Since 2 ≫ tan2 θ, we can ignore this term, which
turns the cubic equation into a linear equation. Next, for the middle term of the left-hand side,
we have order-of-magnitude estimates(

M + m l
L

)2

2LDρ
∝ (LDHρ)2

LDρ
= LDρH2 ≪ L3Dρ

12 ,

therefore, we can neglect this term for a sufficiently long boat. The final relation for the angle
of the heel is thus2

tan θ ≈ lm

2

(
1 − l

L

) 12
L3Dρ

= 6ml (L − l)
L4Dρ

.

It remains, then, to fit this inclination and submergence to the condition of the immersion
of the deck at the point of ascent

H > ξ + L

2 tan θ =
M + m l

L

LDρ
+ l

L

L − l

L

3m

LDρ
,

LDρH − M > m
l

L
+ 3m

l

L

(
1 − l

L

)
= m

l

L

(
4 − 3 l

L

)
.

The right-hand side is quadratic in l/L = x, so its maximum is midway between the roots of
the function f(x) = x(4 − 3x), so for xc = lc/L = 2/3. Thus, we must satisfy the condition

LDρH − M >
4m

3 ,

2Using this relation, let us verify the assumption in the previous remark.

L tan θ =
l

L

L − l

L

6m

LDρ
< 2

M + m l
L

LDρ
= 2ξ

is equivalent to a condition
l

L

(
1 −

l

L

)
3m < M + m

l

L
,(

2 − 3
l

L

)
l

L
m < M ,

where the left-hand side has maximums on the interval 0 < l < L at point l = L/3 with value(
2 − 3

l

L

)
l

L
m ≤

m

3
< M .
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so for the weight of passengers we obtain

mmax, dynamic <
3
4 (LDρH − M) = 3

4mmax, static

which is three-quarters of the maximum load during the voyage.3
The ferry may carry passengers weighing not more than three-quarters of the payload dis-

placement if they are disembarked from the boat by successive ejection in the back, as described
above. The ship’s edge from which ascent is made shall be nearest to the water surface after
one-third of the passengers have disembarked. Finally, let us add that the situation will differ
for a realistic ship since we have considered L ≫ H, even more than L > 100H.
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3Let’s finish our control consideration. Substituting the worst case m = 3M we get
LDρH > 5M = 5LDHρL ,

thus for the density of the ship ρL < ρ/5 = 200 kg/m3, which also means that the draft of such a ship,
when empty, would be only 1/5. In reality, the draft of an empty ship is usually somewhat higher. In some
cases – large tankers – it can still be half as much. So let’s settle it: We’ve solved the problem for most
ships. Otherwise, we would have had to calculate again for the case where the submerged part is triangular.
If to be realistic, real ships, moreover, are not prism-shaped, and calculation would therefore have to be done
numerically.
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