
FYKOS Solution XXXVII.I.P

Problem I.P . . . rocket 10 points; průměr 3,24; řešilo 74 studentů
Using current technology, how much fuel would it take to carry an object of mass m = 1 kg
into low Earth orbit? The leprechaun wanted to save on rocket fuel.

Introduction
The European Space Agency (ESA) specifies the Low Earth Orbit (LEO) as a range of 160 km –
1 000 km (other sources indicate up to 2 000 km corresponding to an orbital period of up
to 128 min). Thus, for the purposes of this problem, we shall only consider cargo transport
methods that successfully transported an arbitrarily large object into this orbit in the past. By
this requirement, we have limited the range of transport vehicles to only a few types of rockets,
as other methods have not yet been put into practice.

We assume that our object of mass mp = 1 kg is the only object we need to carry, so we seek
a rocket with a payload capacity of at least 1 kg while being as light as possible. The Japanese
SS-520 rocket suits these requirements the best.

Orbit
We aim to launch the rocket with the object into an orbit, which we choose to be a circular orbit
at h = 160 km above the Earth’s surface. If our objective is for the object (of a similar weight
to the CubeSats) to remain in orbit without the need for adjustments for the typical duration
of CubeSat missions (which usually last from weeks to a couple of months) and considering
that CubeSats are typically deployed at altitudes around 400 km above the Earth’s surface to
mitigate atmospheric drag, we would need to position the object at a higher altitude. However,
to minimize the required amount of fuel in this scenario, a height of h = 160 km is deemed
sufficient. We can calculate the required orbital velocity for this case by using the formula for
the first cosmic velocity

vk =

√
GM

r
,

where G is the gravitational constant, M is the mass of the Earth, and r is the radius of the
objest’s orbit. In our case r = rZ + h = 6 538 km, where rZ = 6 378 km is the mean radius of
the Earth. We get the velocity vk = 7.81 km·s−1.

We can consider Earth’s rotation to lower the initial velocity needed. By aligning the
rocket’s direction with the Earth’s rotation, we only need to provide a velocity equivalent to
the difference between the escape velocity and the Earth’s rotational velocity at the launch site.
Therefore, we are looking for a cosmodrome close to the equator to maximize the initial speed.

The Guiana Space Centre in French Guiana is an ideal candidate at 5◦3′ N. An object
on Earth at this latitude moves on a circle with radius Ro = RW · cos φ

.= 6 353 km with the
period T = 1 day = 86 400 s. Due to Earth’s rotation, the rocket has a velocity vZ

.= 0.46 km·s−1

at liftoff. Hence, we only need to accelerate the rocket (tangentially to the Earth) to a velocity
of vt = vk − vZ = 7.35 km·s−1.
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Gravitational pull and drag
The magnitude of the gravitational force as a function of the height h and the mass of the
rocket m is

FG = GMm

(rZ + h)2 .

The gravitational acceleration at h = 160 km is equal to a
.= 9.32 m·s−2.

As the rocket travels through the atmosphere, it encounters a drag force described by the
formula:

FO = 1
2CrSρv2 ,

where Cr represents the drag coefficient determined by the rocket’s shape, S denotes the area
of the rocket encountering the drag force (its cross-section in our case), ρ is the density of
the atmosphere, and v is the rocket’s velocity. Let us consider Cr = 0.3 (coefficient for the
shape of a bullet) and the diameter of the rocket’s cross-section as d = 0.52 m, from which we
get S = πd2/4 .= 0.21 m2 for its surface.

The atmosphere’s density can by approximated by an exponential relation1

ρ ≈ ρ0e
h

Hn ,

where ρ0 is the density of the atmosphere at sea level, h is the height above the surface, and Hn is
a constant defined as

Hn =
(

gM

RT0
− L

T0

)−1
,

where g is the gravitational acceleration at sea level, M is the molar mass of the atmosphere,
R is the molar gas constant, T0 is the atmosphere’s temperature at sea level, and L is the rate
of the temperature drop of the atmosphere. We obtain Hn

.= 10.4 km.

Attributes of the rocket
The SS-520 rocket consists of two or three stages. Notably, the SS-520-5, the only variant
in this series that has already successfully delivered an object to LEO, utilizes a three-stage
configuration. However, as the third stage primarily serves for minor trajectory adjustments, we
will focus only on the first two stages in our example. The mass of the entire rocket (excluding
cargo and fuel) is approximately mr = 580 kg (the often quoted mass of mc = 2 579 kg is the
fully loaded rocket, including fuel), with the first stage weighing approximately mI = 540 kg,
and the second and third stages together mII = 40 kg.2 Both the first and second stages use
a solid-fuel engine providing a thrust of Fm = 185 kN, with a specific impulse of Isp = 265 s.3
Based on these values, we can calculate the exhaust velocity of the fumes relative to the rocket

u = Ispg
.= 2 600 m·s−1 ,

and the mass flow rate of the fuel using the equation

Qm = ṁ = Fm

Ispg
.

1Density of air, available at https://en.wikipedia.org/wiki/Density_of_air
2World’s Smallest Launch Vehicle Ready for Second Attempt at Reaching Orbit, available at https://

spaceflight101.com/ss-520-5-launch-preview/
3SS-520 Nano satellite launcher and its flight result, available at https://digitalcommons.usu.edu/cgi/

viewcontent.cgiarticle=4120&context=smallsat
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We get Qm
.= 71.2 kg·s−1.

Flight model
For simplicity, we will divide the rocket flight into two steps. One is the flight of the entire
rocket (including the first stage) vertically up from the Earth. In the second phase, the first
stage is separated, and the rocket is accelerated to achieve the required orbital velocity, enabling
it to travel tangentially in orbit.

In addition to its velocity, the rocket changes its mass during the flight as the fuel is used
and expelled. First, we will calculate the amount of fuel needed to deliver the circular velocity
using the second stage of the rocket. For this, we can use the Tsiolkovsky rocket equation since
no external forces are acting on the body in the tangential direction from the Earth at the
height of the orbit.

Since there are (non-constant) external forces acting on the rocket during the flight, we can
no longer use the Tsiolkovsky rocket equation to calculate the amount of fuel needed for the
first part of the flight (the upward flight). Thus, we will use the more general Meshchersky’s
equation for rocket motion.

Accelerating at the first cosmic velocity
We denote the mass at the beginning of the maneuver mstart = mII +mp +mfuel,2, for the mass
at the end holds mend = mII + mp = 41 kg. The rocket must change its velocity throughout
the maneuver in a tangential direction by ∆v = vt = 7.35 km·s−1, Tsiolkovsky rocket equation
states

mstart = mende∆v/u ,

where u is the exhaust velocity. By substituting the known values, we get the initial mass of this
phase of flight mstart

.= 693 kg and, therefore, the mass of the fuel in the second stage mfuel,2 =
= 652 kg.

Equation of motion
For the model of the rocket’s upward motion, we start with Meshchersky’s equation for the
rocket motion

ṗ = mẍ + ṁu = F ,

where ṁ is the fuel rate, u is the exhaust speed relative to the rocket, p is the rocket’s mo-
mentum, m is the current mass of the rocket, and F is the resultant force acting on the rocket
(gravitational and drag). By substituting the individual forces acting upon the rocket we get

mẍ = ṁu − GMm

(rZ + x)2 − 1
2CrSρ0e− x

Hn v2 ,

after substituting v = ẋ and dividing the whole equation by m we obtain

a = ẍ = ṁ

m
u − GM

(rZ + x)2 − 1
2m

CrSρ0e− x
Hn ẋ2 .

This equation has no analytical solution, but we can attempt to solve it numerically using
a computer simulation.
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Simulation of the first phase of flight
To calculate the modified equation of motion, we use Euler’s method for solving ordinary
differential equations. We will increase the time in suitably small steps (in our case, for example,
∆t = 0.1 s) and observe how the position and velocity of the rocket change during this time.
Thus, we get an equation for the position (height above the surface) of the rocket

xt+∆t = xt + ∆tvt ,

where xt and vt represent the position or the velocity of the rocket at time t respectively,
and xt+∆t is the position of the rocket ∆t later.

The second equation is for velocity

ẋt+∆t = vt+∆t = vt + ∆tat ,

where at is the acceleration of the rocket at time t. By substituting for acceleration, we get

ẋt+∆t = vt+∆t = vt + ∆t

(
ṁ

m
u − GM

(rZ + xt)2 − 1
2m

CrSρ0e− xt
Hn ẋt

2
)

.

As the initial conditions, we choose t = 0 s, x = 0 m (corresponding to the Earth’s surface)
and ẋ = 0 m·s−1 (the rocket has initial velocity equal to zero). At the end of the first phase
of flight, the remaining mass of the rocket must be equal to m0 = mI + mII + mp + mfuel,2 =
= 1 233 kg.

Since we do not know the total initial mass of the rocket corresponding to m = m0 +mfuel,1,
where mfuel,1 is the mass of the fuel in the first stage of the rocket, we will run the simulation
consecutively for different amounts of fuel. We choose mfuel,1 = 0 kg as the lower estimate, and
evaluate the upper estimate by ensuring that the rocket can lift off from the surface under the
initial conditions, i.e., the acceleration is ẍ ≥ 0 m·s−2. By substituting the initial conditions
into the equation of motion, we arrive at an upper estimate of the mass

mfuel,1 ≤ r2
ZFm

GM
− m0

.= 17 660 kg .

At this interval, we simulate each whole unit of kilogram until the rocket reaches the desired
altitude (at which point we have found the minimal mass). A sample of the code used (in
Python) is in the attached file.4

Result
Based on the simulation, the mass of the first stage fuel came out as mfuel,1 = 1 275 kg. There-
fore, the total amount of fuel needed to carry the object is mfuel,1 + mfuel,2

.= 1 927 kg. The
mass of the entire rocket with cargo and fuel is m = 2 508 kg. The traceable total mass of the

4https://drive.google.com/file/d/1SbvIW9X-0cKGT39NKBjj--fl8F7HONBj/view
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SS-520-5 rocket (when flown on 3/2/2018) was mc = 2 579 kg, which is reasonably consistent
with the calculated value.
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